"

N SYBASE

OmniConnect™
Component Integration Services User’s Guide for
Sybase® Adaptive Server™ Enterprise and OmniConnect

c lTM

September 1997
Document ID: 32702-01-1150

Copyright Information

Copyright © 1989-1997 by Sybase, Inc. All rights reserved. Sybase, Inc., 6475 Christie Avenue, Emeryville, CA
94608.

Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
No part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc. Use,
duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of
DFARS 52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, the Sybase logo, APT-FORMS, Certified SYBASE Professional, Data Workbench, First Impression,
PowerBuilder, Powersoft, Replication Server, S-Designor, SQL Advantage, SQL Debug, SQL SMART, SQL
Solutions, Transact-SQL, VisualWriter, and VQL are registered trademarks of Sybase, Inc. Adaptable
Windowing Environment, Adaptive Server, ADA Workbench, AnswerBase, Application Manager,
AppModeler, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, APT Workbench, Backup
Server, Bit-Wise, Client-Library, Client Services, CodeBank, Column Design, Connection Manager,
DataArchitect, Database Analyzer, DataExpress, Data Pipeline, DataWindow, DB-Library, Designor,
Developers Workbench, Dimensions Anywhere, Dimensions Enterprise, Dimensions Server, Direct CONNECT,
Easy SQR, Embedded SQL, EMS, Enterprise Builder, Enterprise Client/Server, Enterprise CONNECT,
Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, EWA, Formula One, Gateway Manager, GeoPoint, InfoMaker,
InformationCONNECT, InternetBuilder, iScript, KnowledgeBase, MainframeCONNECT, Maintenance
Express, MAP, MetaWorks, MethodSet, Navigation Server Manager, Net-Gateway, Netlmpact, Net-Library,
New Media Studio, Object CONNECT, ObjectCycle, OmniCONNECT, OmniSQL Access Module, OmniSQL
Server, OmniSQL Toolkit, Open Client, Open ClientCONNECT, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerCONNECT, Open Solutions, Optima++, PB-Gen, PC DB-
Net, PC Net Library, PowerBuilt, PowerScript, PowerSocket, Powersoft Portfolio, PowerWare Desktop,
PowerWare Enterprise, ProcessAnalyst, Replication Agent, Replication Driver, Replication Server Manager,
Report-Execute, Report Workbench, Resource Manager, RW-DisplayLib, RW-Library, SAFE, SDF, Secure SQL
Server, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Anywhere, SQL Central, SQL
Code Checker, SQL Edit, SQL Edit/TPU, SQL Remote, SQL Server, SQL Server/CFT, SQL Server/DBM, SQL
Server Manager, SQL Server Monitor, SQL Server SNMP SubAgent, SQL Station, SQL Toolset, StarDesignor,
Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Dimensions, Sybase Interplay,
Sybase 1Q, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy
Program, Sybase User Workbench, SybaseWare, SyBooks, System 10, System 11, SystemTools, Tabular Data
Stream, Visual Components, VisualSpeller, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server,
web.sqgl, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, and XA-Server are trademarks of Sybase,
Inc.

All other company and product names used herein may be trademarks or registered trademarks of their
respective companies.

Table of Contents

About This Book
AUGIENCE . . . ottt XV
Howto Use ThiSBOOKo oot e e XV
Adaptive Server Enterprise DOCUMENtS.ttt XV
Other Sources of Infformation i xvii
CONVENtIONS .« oottt e XViii
FYOuNeed Help o xviii

1. Introduction

Overview of Component Integration SErvicesooviieieenn.n. 1-1
Who Can Use Component Integration Services. 1-2
Steps Needed to Use Component Integration Services 1-3

2. Understanding Component Integration Services

BaSIC CONCEPLS . . o v v ettt e e e 2-1
Remote Table ACCESS\ttt 2-1
Access Methods ... 2-2
SEIVEr ClasSeS . . o vttt e e 2-2
Ot TYPES oottt et e e 2-3
Interface to Remote Servers. ... i 2-3

Defining the Storage Location of Individual Objects 2-4
Defining the Default Storage Location for Tables 2-4
Using the create [existing] table Command 2-5

TOPICS ANA ISSUES . . . o ottt e 2-5

Using the create existing table Command 2-6
Datatype CONVErSIONS.ot e 2-7
Example of Remote Table Definition. 2-7

auto identity OptioNn. ot e 2-8

PassthroughMode 2-8
TheconnecttoCommand. 2-8
SP_AULOCONMECT . . .\ v vttt ettt 2-10
SP_PASStIU. ... 2-11
SP_TEMOESl . . o o e vt 2-12

Transaction Management i 2-12
OVEIVIBW . . . oo 2-13
Transactional RPCs 2-13

Component Integration Services User's Guide v

Adaptive Server Enterprise Release 11.5.x

Restrictions on Transaction Management. 2-14
RPCsAsRead-Only Tables. ..., 2-15
text and image Datatypes 2-16

Restrictionson textandimageColumns 2-16

Limits of @@textsSize oot 2-17

OddBytesPadded i 2-17

Converting text and image Datatypescc.un.. 2-17

Pattern Matching withtextData 2-17

Enteringtextand imagevalues................ 2-18

readtext using bytes 2-18

text and image with bulkcopy. i 2-18

Error LOgging . ..o ot 2-18

text and image Data with Server Classsql_server 2-18

text and image Data with Server Class direct_connect (access_server) 2-19

0b2 SErVer ISSUES.ot 2-20

Internal OPerationsottt 2-20
Connection Managemento 2-20
QUENY PrOCESSING . . o vttt ettt e e e e 2-21

QUENY Parsing. ov i 2-22

Query Normalization i 2-22

QUEIY PreproCessSingo v v vttt it 2-23

Decision Point. 2-23

Component Integration Services Plan Generation 2-24

Adaptive Server Optimization and Plan Generation 2-24

Component Integration Services Remote Location Optimizer 2-25

Query EXecution.o 2-27

Component Integration Services Access Methods 2-27
Query Plan Execution 2-28

create table Command. 2-29

create existing tableCommand. L 2-29

alter table Command. 2-30

create indexCommand 2-30

droptable Command. 2-30

dropindexCommand i 2-31

truncate table Command 2-31
LI o T 1= £ 2-31
Referential Integrity i 2-31
SECUNLY ISSUBS. . . .ottt e 2-32
Trusted Mode o 2-32

Adaptive Server Features Not Supported by CIS 2-32
Parallel Processingooviii 2-32

Table of Contents

Adaptive Server Enterprise Release 11.5.x

External SeCUrity. 2-33
Directory ServiCes.t 2-33

3. Using Component Integration Services

Getting Started with Component Integration Services. 3-1
AddingaRemote SEIVer 3-1
Overview of the Procedure.o 3-1

Step 1: Add the Remote Server to the InterfacesFile 3-2

Step 2: Create Server Entriesin System Tables. 3-2

Step 3: Add an Alternate Login and Password 3-3
Verifying Connectivity 3-3
Mapping Remote Objects to Local Proxy Tables 3-4
Overview of the Procedure.t 3-4

Step 1: Define the Storage Location of a Remote Object........... 3-4

Step 2: Map Remote Table Schema to Adaptive Server 3-6

Join Between Two Remote Tables. it 3-6
Overview of the Procedure.t 3-6

Step 1: Add the Remote Servers to the InterfacesFile 3-6

Step 2: Definethe Remote Servers. ..., 3-6

Step 3: Define the Remote Objects. 3-7

Step 4: Map the Remote Tables to Adaptive Server 3-8

Step 5: PerformtheJoin. 3-10
Configurationand TUNINGot 3-10
Using sp_configure. o 3-11
sysconfigures Table. 3-12
Changing the Configuration Parameters 3-12
Component Integration Services Configuration Parameters. 3-12

RPC Handling and Component Integration Servicesv... 3-15
Site Handler Handling Outbound RPCs. 3-15
Component Integration Services Handling Outbound RPCs 3-16
dbcc CommMaNSo 3-17
dbeC OPLIONS. . . oo 3-18
Trace Flagso 3-18
Using update statisticSo 3-19
FindingIndex Names i 3-20

Shared Memory REQUIrEMENTSottt 3-20
Additional Component Integration Services Memory Requirements. 3-22
Backing Up Your System 3-22
Objects Recoverable Throughddigen............................. 3-22
Recovering Component Integration Services Objects. 3-23
Transaction Log ISSUES. 3-23

Component Integration Services User's Guide vii

Adaptive Server Enterprise Release 11.5.x

4. Server Classes

viii

Elements NotRestored, 3-24
Defining Remote SErvers. oo 4-1
Server Class SQI_Server 4-1
Server Class db2. oot 4-2
Server Class direct_connect (aCCeSS_SErVEr)vveeeiinineeennnn.. 4-2
SerVer Class SAS . . . oottt e 4-3
Server Class QeNEriC.ot 4-4
Datatype CONVEISIONS o oottt et ettt e e e e 4-4
Remote Server Capabilities. i i 4-4
Transact-SQL COmmandsot 4-5
altertable 4-6
begin transaction 4-11
ClOSE . o 4-13
commMIt transaction 4-14
createexistingtable 4-16
Create INABX . . oo e 4-25
createtable e 4-27
deallocate CUISOr. . ..o 4-32
deClare CUISOK oo e 4-33
elete .. o e 4-34
drop database 4-38
Arop INAEX . oo 4-39
droptable . ..o 4-41
BXBCUTE .« oot 4-43
fotCh L e 4-44
1157 o 4-46
0] o 4-49
prepare transaction i 4-50
FRAOEEXE. . . o e 4-52
rollback transactiono 4-54
SBlOCt. L. 4-56
] 4-60
SBEUSEE . ettt 4-62
truncatetable 4-63
UPALE. . . e 4-64
update StatistiCSo 4-69
WXL, . o e 4-71

Table of Contents

Adaptive Server Enterprise Release 11.5.x

5. Utility Programs

A. Troubleshooting

Problems Accessing Component Integration Services A-1
Problems Using Component Integration Servicesooouu... A-2
Unable to AccessRemote Servercoviviiiiiiinnnni.. A-2
Requested Server Name NotFound A-2

Driver Call to Connect Two Endpoints Failed. A-3
LoginFailed A-4
Unable to Access Remote Object ..., A-5
Problem Retrieving Data From Remote Objects A-6
Obiject Is Altered Outside Component Integration Services A-6

Index Is Added or Dropped Outside CIS...................... A-7
[FYOUNeed Help . .. A-8

Index

Component Integration Services User's Guide iX

Adaptive Server Enterprise Release 11.5.x

Table of Contents

Figure 1-1:
Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 4-1:

List of Figures

Component Integration Services connects to multiple vendor databases............. 1-1
QUETY PrOCESSING SEEPS ...vvveriieieseresteesesie ettt ettt e s et sesessesesesbebe e seesenenenas 2-22
Using sp_addobjectdef to map a remote table to a proxy table.............cccccceenee 3-5
Defining remote tables in a 1ocal SENVET ... 3-9
Adaptive Server with CIS interacts with clients and other serversc........... 4-3

Component Integration Services User's Guide Xi

Adaptive Server Enterprise Release 11.5.x

Xii List of Figures

Table 3-1:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 4-7:
Table 4-8:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:

List of Tables

Component Integration Services trace flagsccocoovveviciiiiciiccceeseees 3-19
DirectConnect datatype conversions for alter tableccccooveiniiiinicine 4-8
DB2 datatype conversions for alter table ... 4-9
Adaptive Server datatype conversions for create existing table.......................... 4-18
DirectConnect datatype conversions for create existing table...............ccccccveveni. 4-19

DB2 datatype conversions for create existing table.......
ODBC datatype conversions for create existing table
DirectConnect datatype conversions for create table
DB2 datatype conversions for create table...........ccoccoveveiiiiiiinccc e
ddigen action DY SEIVEE LYPE........oceiiieeiereee e s
DB2 to Adaptive Server default datatype Mapping......c.ccoceoeeeereeerercecnenecneeene
Generic to Adaptive Server default datatype mapping........ccocoeeverneienneeiinennns 5-12
DirectConnect default datatype Mappingcccocevveienerieiveieisese s 5-13

Component Integration Services User's Guide Xiii

Adaptive Server Enterprise Release 11.5.x

Xiv List of Tables

About This Book

Audience
This book is written for Sybase® Adaptive Server™ Enterprise and
OmniConnect™ System Administrators, database administrators,
and users.

How to Use This Book

This guide will assist you in configuring and using Component
Integration Services. The book includes the following chapters:

Chapter 1, “Introduction,” provides an overview of Component
Integration Services.

Chapter 2, “Understanding Component Integration Services,”
provides a framework for understanding how Component
Integration works. This chapter includes both basic concepts and
in-depth topics.

Chapter 3, “Using Component Integration Services,” includes a
tutorial designed to help new users get Component Integration
Services up and running, and provides configuration and tuning
information.

Chapter 4, “Server Classes,” describes the Component
Integration Services server classes required to access remote
databases.

Chapter 5, “Utility Programs,”describes the utilities that are
specific to Component Integration Services.

Appendix A, “Troubleshooting,” provides troubleshooting tips if
you encounter a problem with Component Integration Services.

Adaptive Server Enterprise Documents

The following documents comprise the Sybase Adaptive Server
Enterprise documentation:

The Release Bulletin for your platform — contains last-minute
information that was too late to be included in the books.

A more recent version of the Release Bulletin may be available on
the World Wide Web. To check for critical product or document

Component Integration Services User's Guide XV

Adaptive Server Enterprise Documents Adaptive Server Enterprise Release 11.5.x

XVi

information that was added after the release of the product CD,
use SyBooks™-on-the-Web.

The Adaptive Server installation documentation for your
platform — describes installation and upgrade procedures for all
Adaptive Server and related Sybase products.

The Adaptive Server configuration documentation for your
platform — describes configuring a server, creating network
connections, configuring for optional functionality, such as
auditing, installing most optional system databases, and
performing operating system administration tasks.

What’s New in Adaptive Server Enterprise Release 11.5? — describes
the new features in Adaptive Server release 11.5, the system
changes added to support those features, and the changes that
may affect your existing applications.

Navigating the Documentation for Adaptive Server — an electronic
interface for using Adaptive Server. This online document
provides links to the concepts and syntax in the documentation
that are relevant to each task.

Transact-SQL User’s Guide — documents Transact-SQL®, Sybase’s
enhanced version of the relational database language. This
manual serves as a textbook for beginning users of the database
management system. This manual also contains descriptions of
the pubs2 and pubs3 sample databases.

System Administration Guide — provides in-depth information
about administering servers and databases. This manual includes
instructions and guidelines for managing physical resources and
user and system databases, and specifying character conversion,
international language, and sort order settings.

Adaptive Server Reference Manual — contains detailed information
about all Transact-SQL commands, functions, procedures, and
datatypes. This manual also contains a list of the Transact-SQL
reserved words and definitions of system tables.

Performance and Tuning Guide — explains how to tune Adaptive
Server for maximum performance. This manual includes
information about database design issues that affect
performance, query optimization, how to tune Adaptive Server
for very large databases, disk and cache issues, and the effects of
locking and cursors on performance.

About This Book

Adaptive Server Enterprise Release 11.5.x Other Sources of Information

The Utility Programs manual for your platform — documents the
Adaptive Server utility programs, such as isql and bcp, which are
executed at the operating system level.

Security Administration Guide — explains how to use the security
features provided by Adaptive Server to control user access to
data. This manual includes information about how to add users
to Adaptive Server, administer both system and user-defined
roles, grant database access to users, and manage remote
Adaptive Servers.

Security Features User’s Guide — provides instructions and
guidelines for using the security options provided in Adaptive
Server from the perspective of the non-administrative user.

Error Messages and Troubleshooting Guide —explains how to resolve
frequently occurring error messages and describes solutions to
system problems frequently encountered by users.

Component Integration Services User’s Guide for Adaptive Server
Enterprise and OmniConnect — explains how to use the Adaptive
Server Component Integration Services feature to connect remote
Sybase and non-Sybase databases.

Adaptive Server Glossary — defines technical terms used in the
Adaptive Server documentation.

Master Index for Adaptive Server Publications — combines the
indexes of the Adaptive Server Reference Manual, Component
Integration Services User Guide, Performance and Tuning Guide,
Security Administration Guide, Security Features User’s Guide,
System Administration Guide, and Transact-SQL User’s Guide.

Other Sources of Information

Use the SyBooks™ and SyBooks-on-the-Web online resources to
learn more about your product:

SyBooks documentation is on the CD that comes with your
software. The DynaText browser, also included on the CD, allows
you to access technical information about your product in an
easy-to-use format.

Refer to Installing SyBooks in your documentation package for
instructions on installing and starting SyBooks.

SyBooks-on-the-Web is an HTML version of SyBooks that you
can access using a standard Web browser.

Component Integration Services User's Guide XVii

Conventions

Adaptive Server Enterprise Release 11.5.x

To use SyBooks-on-the-Web, go to http://www.sybase.com, and
choose Documentation.

Conventions
What you type to the computer screen is shown as:
Enter text in an entry field
Computer output is shown as:
OmniConnect returns results.
Command arguments you replace with a non-generic value are
shown in italics:
machine_name
If You Need Help
Each Sybase installation that has purchased a support contract has
one or more designated people who are authorized to contact Sybase
Technical Support. If you cannot resolve a problem using the
manuals or online help, ask a designated person at your site to
contact Sybase Technical Support.
XViii About This Book

Introduction

Overview of Component Integration Services

Component Integration Services is a feature that extends Adaptive
Server capabilities and provides enhanced interoperability. It is the
core interoperability feature of OmniConnect.

Component Integration Services allows Adaptive Server and
OmniConnect to present a uniform view of enterprise data to client
applications and provides location transparency to enterprise-wide
data sources.

Component Integration Services allows users to access both Sybase
and non-Sybase databases on different servers. These external data
sources include host data files and tables, views and RPCs (remote
procedure calls) in database systems such as Adaptive Server,
Oracle, and DB2, as shown in Figure 1-1.

DB2in NY

dataserver Ci$

ADAPTIVE SERVER

Figure 1-1: Component Integration Services connects to multiple vendor
databases

Using Component Integration Services, you can:

= Access tables in remote servers as if the tables were local.

< Perform joins between tables in multiple remote, heterogeneous
servers. For example, it is possible to join tables between an
Oracle database management system (DBMS) and an Adaptive
Server, and between tables in multiple Adaptive Servers.

Component Integration Services User’s Guide 11

Overview of Component Integration Services Adaptive Server Enterprise Release 11.5.x

1-2

= Transfer the contents of one table into a new table on any
supported remote server by means of a select into statement.

= Provide applications, such as PowerBuilder®, Microsoft Access,
and DataEase, with transparent access to heterogeneous data.

= Maintain referential integrity across heterogeneous data sources.

= Access hative remote server capabilities using the Component
Integration Services passthrough mode.

Who Can Use Component Integration Services

Component Integration Services can be used by anyone who needs
to access multiple data sources or legacy data. It can also be used by
anyone who needs to migrate data from one server to another.

A single server is often used to access data on multiple external
servers. Component Integration Services manages the data
regardless of the location of the external servers. Data management
is transparent to the client application.

Component Integration Services, in combination with
EnterpriseConnect™ products, provides transparent access to a
wide variety of data sources, including:

= Oracle

= Ingres

= Informix

< Rdb

= IBM databases including:
- DB2 for MVS
- DB2/400
- DB2/2

- DB2 for VM (SQL/DS)
« Microsoft SQL Server
= Adaptive Server Enterprise
=« Adaptive Server Anywhere™
< Mainframe data, including:
- ADABAS
- IDMS

Introduction

Adaptive Server Enterprise Release 11.5.x Steps Needed to Use Component Integration Services

- IMS
- VSAM

The list of certified and supported sources and front-end tools is
increasing. For current information on all data sources, versions
supported, and products required for support, please call the Sybase
FAX on Demand at 1-800-423-8737. Request the “Partner
Certification Report.”

Steps Needed to Use Component Integration Services

To get Component Integration Services running:

< Make sure you have installed the Component Integration
Services or the OmniConnect option.

< [ssue the command sp_configure “enable cis”, 1
= Restart Adaptive Server

= Install DirectConnect server(s) or gateways for the external data
sources you choose to access (Oracle, Ingres, DB2, Informix, Rdb).

= Configure the server to access remote objects as described in
Chapter 3, “Using Component Integration Services.”

Component Integration Services User's Guide 1-3

Steps Needed to Use Component Integration Services

Adaptive Server Enterprise Release 11.5.x

1-4 Introduction

Basic Concepts

Understanding Component
Integration Services

This chapter discusses some of the essential features of Component
Integration Services. It is intended to help you understand how
Adaptive Server works with the Component Integration Services
option configured. The chapter includes the following topics:

= Basic Concepts —is of particular interest to new users; it describes
steps the user takes to define objects and create tables.

« Topics and Issues — describes key features of Component
Integration Services—the create existing table command, the connect
command, passthrough mode, text and image datatype
processing, and transaction management.

< Internal Operations — describes the underlying operations
performed on behalf of an application.

« Adaptive Server Features Not Supported by CIS - describes
Adaptive Server features that are not supported by Component
Integration Services.

Before accessing remote tables with Component Integration
Services, you must have a valid interfaces file (or sql.ini file if you are
using Windows NT). For information on setting up an interfaces file,
see the configuration documentation for your platform.

Remote Table Access

The ability to access remote (or external) tables as if they were local is
a hallmark of Component Integration Services. Component
Integration Services presents tables to a client application as if all the
data in the tables were stored locally. Internally, when a query
involving remote tables is executed, the storage location is
determined, and the remote location is accessed so that data can be
retrieved.

The access method used to retrieve remote data is determined by two
attributes of the external object:

= The server class associated with the remote object
= The object type

Component Integration Services User’s Guide 2-1

Basic Concepts

Adaptive Server Enterprise Release 11.5.x

2-2

To achieve location transparency, which means remote tables appear
as local tables to the client, tables must first be mapped to their
corresponding external locations. This mapping is performed by
means of stored procedures. See the Adaptive Server Reference Manual
for more information on stored procedures.

Access Methods

Access methods form the interface between the server and an
external object. For each server class, there is a separate access
method that handles all interaction between Adaptive Server and
remote servers of the same class.

Server Classes

A server class must be assigned to each server when it is added by
means of the system procedure sp_addserver. There are seven server
classes, each of which specifies the access method used to interact
with the remote server. The server classes are:

= sql_server — indicates that the server is a Sybase SQL Server™ or
an Adaptive Server or a Microsoft SQL Server. Component
Integration Services determines whether the Sybase server is a
release 10.0 or later server (supports cursors and dynamic SQL)
or a pre-release 10.0 server (does not support cursors or dynamic
SQL).

= local —the local server. There can be only one.

= direct_connect — indicates that the server is an Open Server™
application that conforms to the interface requirements of a
DirectConnect™ server.

« access_server —a synonym for server class direct_connect for
compatibility with previous releases.

< db2 - indicates that the server is a gateway to DB2 or DB2-
compatible databases. Net-Gateway™ and Database Gateway for
DB2, AS/400, InfoHub, and SQL/DS fall into this category.

= generic — indicates that the server is an Open Server application
that conforms to the interface requirements of a Generic Access
Module.

= sds — indicates that the server conforms to the interface
requirements of a Specialty Data Store.

Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Basic Concepts

Object Types

The server presents a number of object types to client applications as
if they were local tables. Supported object types are:

= table — The object in a remote server of any class is a relational
table. This is the default type.

= view — The object in a remote server of any class is a view.
Component Integration Services treats views as if they were local
tables without any indexes.

= rpc - The object in a remote server of any class is an RPC.
Component Integration Services treats the result set from the
RPC as a read-only table.

Interface to Remote Servers

The interface between the server and remote servers is handled by
the Open Client software, Client-Library™. The Client-Library
features that are used to implement the interface are dependent upon
the class of server with which Component Integration Services is
interacting.

For example, if the server class is direct_connect (access_server), a
number of release 11.0 features such as cursor and dynamic requests
are used. These features are not used by a server of class generic.

Before the server can interact with a remote server, you need to
configure the following:

< Remote server addition to the interfaces file (or sgl.ini file if you are
using Windows NT)

= Remote server definition
= Remote server login information
= Remote object definition

Remote Server Definition

Remote servers are defined by means of the stored procedure
sp_addserver. This procedure is documented in the Adaptive Server
Reference Manual.

Component Integration Services User's Guide 2-3

Basic Concepts

Adaptive Server Enterprise Release 11.5.x

2-4

Logging into Remote Servers

Once the remote server has been configured, login information must
be provided. By default, the server uses the names and passwords of
its clients whenever it connects to a remote server on behalf of those
clients. However, this default can be overridden by the use of the
stored procedure sp_addexternlogin. This procedure allows a system
administrator to define the name and password for each user who
connects to a remote server.

Using connect to server_name, you can verify that the server
configuration is correct. This command establishes a passthrough
mode connection to the remote server. Passthrough mode allows
clients to communicate with remote servers in native syntax. This
passthrough mode remains in effect until you issue a disconnect
command.

Defining Remote Objects

Once a remote server has been properly configured, objects in that
remote server cannot be accessed as tables until a mapping between
them and a local object (proxy table) has been established.

You can create new tables on remote servers, and you can define the
schema for an existing object in a remote server. The procedures for
both are similar.

You can use one of two methods for defining the storage location of
remote objects:

1. Define the storage location of individual objects
2. Define the default location of all objects in a database

Defining the Storage Location of Individual Objects

Defining individual object storage locations is done by means of the
system procedure sp_addobjectdef. This procedure allows you to
associate a remote object with a local proxy table name. The remote
object may or may not exist before you do the mapping. Complete
syntax for sp_addobjectdef is provided in the Adaptive Server Reference
Manual.

Defining the Default Storage Location for Tables

Defining the default storage location for all tables in a given database
is done by means of the stored procedure sp_defaultloc. This procedure

Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Topics and Issues

Topics and Issues

establishes the location of tables that are to be created for a given
database. The remote objects may or may not already exist. You can
override sp_defaultloc with sp_addobjectdef for individual tables.
sp_defaultloc can not be used when local tables are required. The
syntax for sp_defaultloc is provided in the Adaptive Server Reference
Manual.

Using the create [existing] table Command

Once you have defined the storage location, you can create the table
as a new or existing object. If the table does not already exist at the
remote location, use the create table syntax. If it already exists, use the
create existing table syntax. If the object type is rpc, only the create existing
table syntax is allowed.

When a create existing table statement is received, and the object type is
either table or view, the existence of the remote object is checked by
means of the catalog stored procedure sp_tables. If the object exists,
then its column and index attributes are obtained. Column attributes
are compared with those defined for the object in the create existing
table statement. Column name, type, length, and null property are
checked. Index attributes are added to the sysindexes system table.

Once the object has been created, either as a new or an existing object,
the remote object can be queried by using its local name.

The following topics, commands, and processes are key features of
Component Integration Services and are described in the following
sections:

= *“Using the create existing table Command”
= *“auto identity Option”

 “Passthrough Mode”

= “Transaction Management”

e “RPCs As Read-Only Tables”

= “text and image Datatypes”

Component Integration Services User's Guide 2-5

Topics and Issues Adaptive Server Enterprise Release 11.5.x

Using the create existing table Command

The create existing table command allows the definition of existing
tables (proxy tables). The syntax for this option is similar to the create
table command and reads as follows:

create existing table table_name (column_list)
[on segment _name]

The action taken by the server when it receives this command is quite
different from the action it takes when it receives the create table
command, however. In this case, a new table is not created at the
remote location; instead, the table mapping is checked, and the
existence of the underlying object is verified. If the object does not
exist (either host data file or remote server object), the command is
rejected with an error message.

If the object does exist, its attributes are obtained and used to update
system tables sysobjects, syscolumns, and sysindexes.

= The nature of the existing object is determined.

= For remote server objects (other than RPCs), column attributes
found for the table or view are compared with those defined in
the column_list. Column names must match identically (although
case is ignored), column types and lengths must match, or at least
be convertible, and the NULL attributes of the columns must
match. (See the data type conversion tables in Chapter 4, “Server
Classes.”)

= Index information from the host data file or remote server table is
extracted and used to create rows for the system table sysindexes.
This defines indexes and keys in server terms and enables the
query optimizer to consider any indexes that may exist on this
table.

= The on segment_name clause is processed locally and is not passed
to a remote server.

= Referential constraints are passed to the remote location when
appropriate. See Chapter 4, “Server Classes.”

After successfully defining an existing table, issue an update statistics
command for the table.This allows the query optimizer to make
intelligent choices regarding index selection and join order.

2-6 Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Topics and Issues

Datatype Conversions

When you use the create table or create existing table commands, you
must specify all datatypes, using recognized Adaptive Server
datatypes. If the remote server tables reside on a class of server that
is heterogeneous, the datatypes of the remote table are converted
into the specified Adaptive Server types automatically when the data
is retrieved. If the conversion cannot be made, the create table or create
existing table commands do not allow the table to be created or defined.

Chapter 4, “Server Classes,” contains a section for each supported
server class that describes all possible datatype conversions that are
implicitly performed by the server.

Example of Remote Table Definition

The following example illustrates the steps necessary to define the
remote Adaptive Server table, authors, starting with the server
definition:

1. Define a server named SYBASE. Its server class is sgl_server, and
its name in the interfaces file is SYBASE:

exec sp_addserver SYBASE, sql_server, SYBASE

2. Define a remote login alias. This step is optional. User “sa” is
known to remote server SYBASE as user “sa,” password
“timothy””:

exec sp_addexternlogin SYBASE, sa, sa, timothy

3. Add an object definition for the remote authors table, to be
known locally as authors:

exec sp_addobjectdef authors,
"SYBASE.pubs2.dbo.authors", "table"

4. Define the remote authors table:

create existing table authors

(
au_id id not null,
au_lname varchar(40) not null,
au_fname varchar(20) not null,
phone char(12) not null,
address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode char(10) null

)

Component Integration Services User's Guide 2-7

Topics and Issues

Adaptive Server Enterprise Release 11.5.x

2-8

5. Update statistics in tables to ensure reasonable choices by the
guery optimizer:

update statistics authors
6. Execute a query to test the configuration:

select * from authors where au_Iname = 'Carson’

auto identity Option

When the Adaptive Server auto identity database option is enabled, an
IDENTITY column is added to any tables that are created in the
database. The column name is CIS_IDENTITY_COL, for proxy
tables, or SYB_IDENTITY_COL, for local tables. In either case, the
column can be referenced using the syb_identity keyword.

Passthrough Mode

Passthrough mode is provided within Component Integration
Services as a means of enabling a user to perform native operations
on the server to which the user is being “passed through.”

For example, requesting passthrough mode for an Oracle server,
allows you to send native Oracle SQL statements to the Oracle
DBMS. Results are converted into a form that is usable by the Open
Client™ application and passed back to the user.

The Transact-SQL® parser and compiler are bypassed in this mode,
and each language batch received from the user is passed directly to
the server to which the user is connected in passthrough mode.
Results from each batch are returned to the client.

There are several ways to use passthrough mode:
= The connect to command

= The sp_autoconnect stored procedure

« The sp_passthru stored procedure

= The sp_remotesql procedure

The connect to Command

The connectto command enables users to specify the server to which a
passthrough connection is required. The syntax of the command is as
follows:

Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Topics and Issues

O Note

connect to server_name

where server_name is the name of a server added to the sysservers
table, with its server class and network name defined. See
sp_addserver in the Adaptive Server Reference Manual.

When establishing a connection to server_name on behalf of the user,
the server uses:

= Aremote login alias set using sp_addexternlogin, or

< The name and password used to communicate with the Adaptive
Server.

In either case, if the connection cannot be made to the server
specified, the reason is contained in a message returned to the user.

Once a passthrough connection has been made, the Transact-SQL
parser and compiler are bypassed when subsequent language text is
received. Any statements received by the server are passed directly
to the specified remote server.

Some database management systems do not recognize more than one
statement at a time and produce syntax errors if, for example, multiple select
statements were received as part of a single language text buffer.

After statements are passed to the requested server, any results are
converted into a form that can be recognized by the Open Client
interface and sent back to the client program.

To exit from passthrough mode, issue the disconnect, or disc,
command. Subsequent language text from this client is then
processed using the Transact-SQL parser and compiler.

Permission to use the connect to command must be explicitly granted
by the System Administrator. The syntax is:

grant connect to user_name
To revoke permission to use the connect to, the syntax is:
revoke connect from user_name

The connect to permissions are stored in the master database. To
globally grant or revoke permissions to “public”, the System
Administrator sets the permissions in the master database; the effect
is server-wide, regardless of what database is being used. The
System Administrator can only grant or revoke permissions to or
from a user, if the user is a valid user of the master database.

Component Integration Services User's Guide 29

Topics and Issues

Adaptive Server Enterprise Release 11.5.x

2-10

The System Administrator can grant or revoke “all” permissions to
or from “public” within any database. If the permissions are in the
master database, “all” includes the connect to command. If they are in
another database, “all”” does not include the connect to command.

Example

The System Administrator wants to revoke permission from
“public” and wants only the user “fred” to be able to execute the
connect to command. “fred” must be made a valid user of master. To
do this, the System Administrator issues the following commands in
master:

revoke connect from public
sp_adduser fred
grant connect to fred

sp_autoconnect

Some users may always require a passthrough connection to a given
server. If this is the case, Component Integration Services can be
configured so that it automatically connects these users to a specified
remote server in passthrough mode when the users connect to the
server. This feature is enabled and disabled by the system procedure
sp_autoconnect using the following syntax:

sp_autoconnect server_name |, true|false |, loginname]

Before using sp_autoconnect, add the server_name to sysservers by using
sp_addserver.

A user can request automatic connection to a server using
sp_autoconnect, but only the System Administrator can enable or
disable automatic passthrough connection for another user. Thus,
only the System Administrator can specify a third argument to this
procedure.

If the second argument is true, the autoconnect feature is enabled for the
current user (or the user specified in the third argument). If the
second argument is false, the autoconnect feature is disabled.

Anytime a user connects to the server, that user’s autoconnect status
in syslogins is checked. If enabled, the server_name, also found in
syslogins (placed there by sp_autoconnect), is checked for validity. If the
server is valid, the user is automatically connected to that server, and
a passthrough status is established. Subsequent language statements
received by the server from this user are handled exactly as if the

Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Topics and Issues

user explicitly entered the connect command. This user then views the
server very much like a passthrough gateway to the remote server.

When an “autoconnected” user executes a disconnect, she or he is
returned normally to the server.

If the remote server cannot be reached, the user (unless the user is
assigned the “sa” role) will not be connected to the local Adaptive
Server. A “login failed” error message is returned.

sp_passthru

The sp_password procedure allows the user to pass a SQL command
buffer to a remote server. The syntax of the SQL statement(s) being
passed is assumed to be the syntax native to the class of server
receiving the buffer; no translation or interpretation is performed.
Results from the remote server are optionally placed in output
parameters. The syntax for sp_passthru follows:

sp_passthru server, command, errcode, errmsg, rowcount
[,argl, arg2, ... arg nj

where:

= server is the name of the server that is to receive the SQL
command buffer; the datatype is varchar(30).

= command is the SQL command buffer; the datatype is varchar(255).

= errcode is the error code returned by the remote server; the
datatype is int output.

= errmsg is the error message returned by the remote server; the
datatype is varchar(255) output.

= rowcount is the number of rows affected by the last command in
the command buffer; the datatype is int output.

= argl-argn are optional parameters. If provided, these output
parameters will receive the results from the last row returned by
the last command in the command buffer. The datatypes may
vary. All must be output parameters.

Example

sp_passthru ORACLE, "select date from dual",
@errcode output, @errmsg output, @rowcount output,
@oradate output

This example returns the date from the Oracle server in the output
parameter @oradate. If an Oracle error occurs, the error code is placed

Component Integration Services User's Guide 2-11

Topics and Issues

Adaptive Server Enterprise Release 11.5.x

2-12

in @errcode and the corresponding message is placed in @errmsg. The
@rowcount parameter is set to 1.

For more information on sp_passthru and its return status, refer to the
Adaptive Server Reference Manual.

sp_remotesq|

sp_remotesgl allows you to pass native syntax to a remote server. The
procedure establishes a connection to a remote server, passes a query
buffer, and relays the results back to the client. The syntax for
sp_remotesq| is as follows:

sp_remotesql server_name, query_bufl
[, query bufz .., query_buf254]
where:

< server_name is the name of a server that has been defined using
sp_addserver. server_name is a varchar(30) field. If server_name is not
defined or is not available, the connection fails, and the
procedure is aborted. This parameter is required.

= query_bufl is a query buffer of type char or varchar with a
maximum length of 255 bytes. This parameter is required.

Each additional buffer is char or varchar with a maximum length of
255 bytes. If supplied, these optional arguments are concatenated
with the contents of query_bufl into a single query buffer.

Example

sp_remotesq| freds_server , "select @@version"

In this example, the server passes the query buffer to freds_server,
which interprets the select @@version syntax and returns version
information to the client. The returned information is not interpreted
by the server.

For more information on sp_remotesgl and its return codes, refer to the
Adaptive Server Reference Manual.

Transaction Management

Transactions provide a way to group Transact-SQL statements so
that they are treated as a unit—either all work performed by the
statements is committed to the database, or none of it is.

Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Topics and Issues

For the most part, transaction management with Component
Integration Services is the same as transaction management in
Adaptive Server, but there are some differences. They are discussed
in the following section, “Overview.”

Overview

Component Integration Services makes every effort to manage user
transactions reliably. However, the different access methods
incorporated into the server allow varying degrees of support for
this capability. The general logic described below is employed by
server classes direct_connect (access_server), sql_server (when the
server involved is release 10.0 or later), and sds if the Specialty Data
Store supports transaction management.

The method for managing transactions involving remote servers
uses a two-phase commit protocol. Adaptive Server 11.5 implements
a strategy that ensures transaction integrity for most scenarios.
However, there is still a chance that a distributed unit of work will be
left in an undetermined state. Even though two-phase commit
protocol is used, no recovery process is included.

The general logic for managing a user transaction is as follows:

Component Integration Services prefaces work to a remote server
with a begin transaction notification. When the transaction is ready to be
committed, Component Integration Services sends a prepare transaction
notification to each remote server that has been part of the
transaction. The purpose of prepare transaction is to “ping” the remote
server to determine that the connection is still viable. If a prepare
transaction request fails, all remote servers are told to roll back the
current transaction. If all prepare transaction requests are successful, the
server sends a commit transaction request to each remote server
involved with the transaction.

Any command preceded by begin transaction can begin a transaction.
Other commands are sent to a remote server to be executed as a
single, remote unit of work.

Transactional RPCs

The server allows RPCs to be included within the unit of work
initiated by the current transaction.

Before using transactional RPCs, issue the set transactional_rpc on or set
cis_rpc_handling on command.

Component Integration Services User's Guide 2-13

Topics and Issues Adaptive Server Enterprise Release 11.5.x

Assuming that the remote server can support the inclusion of RPCs
within transactions, the following syntax shows how this capability
might be used:

begin transaction
insert into t1 values (1)
update t2 setc1 = 10
execute @status = RMTSERVER.pubs2.dbo.myproc
if @status =1
commit transction
else
rollback transaction

In this example, the work performed by the procedure myproc in
server RMTSERVER is included in the unit of work that began with
the begin transaction command. This example requires that the remote
procedure myproc return a status of “1” for success. The application
controls whether the work is committed or rolled back as a complete
unit.

The server that is to receive the RPC must allow RPCs to be included
in the same transactional context as Data Manipulation Language
(DML) commands (select, insert, delete, update). This is true for
Adaptive Server and is expected to be true for most DirectConnect
products being released by Sybase. However, some database
management systems may not support this capability.

Restrictions on Transaction Management

Restrictions on transaction management are as follows:
= Savepoints are not propagated to remote servers.

= If nested begin transaction and commit transaction statements are
included in a transaction that involves remote servers, only the
outermost set of statements is processed. The innermost set,
containing the begin transaction and commit transaction statements, is
not transmitted to remote servers.

« The transaction model described in “Overview” on page 2-13 is
not supported in server class generic or server class db2. It is also
not supported in server class sql_server when the remote server is
a pre-release 10.0 SQL Server or a Microsoft SQL Server. In these
cases, the transactions are committed after each statement is
completed.

2-14 Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Topics and Issues

RPCs As Read-Only Tables

Component Integration Services users can map remote or external
objects of the type rpc to local proxy tables. If a table is created in this
way, it can be referenced only by the select and drop commands. The
commands insert, delete, and update generate error messages, since the
table is assumed to be read-only.

If an object of the type rpc has been defined within the server, a query
is not issued to the remote server on which the object resides.
Instead, the server issues an RPC and treats the results from the RPC
as a read-only table.

Examples

sp_addobjectdef rtable, "RMTSERVER...myproc", "rpc"

create existing table rtable
(coll int,
col2 datetime,
col3 varchar(30)

)

select * from rtable

When this query is issued, the server sends the RPC named myproc to
server RMTSERVER. Row results are treated like the results from
any other table; they can be sorted, joined with other tables, grouped,
inserted into another table, and so forth.

RPC parameters should represent arguments that restrict the result
set. If the RPC is issued without parameters, the entire result set of
the object is returned. If the RPC is issued with parameters, each
parameter further limits the result set. For example, the following
query:

select * from rtable where coll = 10

results in a single parameter, named @col1, that is sent along with the
RPC. Its value is 10.

Component Integration Services attempts to pass as many of the
search arguments as possible to the remote server, but depending on
the SQL statement being executed, Component Integration Services
might perform the result set calculation itself. Each parameter
represents a search for an exact match, for example, the = operator.

The following are rules which define the parameters sent to the RPC.
If an RPC will be used as a Component Integration Services object,
these rules should be kept in mind during development.

Component Integration Services User's Guide 2-15

Topics and Issues

Adaptive Server Enterprise Release 11.5.x

2-16

= Component Integration Services sends = operators in the where
clause as parameters. For example, the query:

select * from rpcl wherea=3 and b =2

results in Component Integration Services sending two
parameters. Parameter a has a value of 3 and parameter b has a
value of 2. The RPC is expected to return only result rows in
which column a has a value of 3 and column b has a value of 2.

= Component Integration Services will not send any parameters for
a where clause, or portion of a where clause, if there is not an exact
search condition. For example:

select * from rpcl wherea=3orb =2

Component Integration Services will not send parameters for a
or b because of the or clause.

Another example:
select * from rpcl wherea=2and b <3

Component Integration Services will not send parameters
because there is nothing in the where clause representing an exact
search condition. Component Integration Services will perform
the result set calculation locally.

text and image Datatypes

The text datatype is used to store printable character data which can
be more than 255 bytes. The image datatype is used to store more than
255 bytes of hexadecimal-encoded binary data. The maximum length
for text and image data is defined by the server class of the remote
server to which the column is mapped:

= For servers of class sgl_server, the maximum is 2147MB.

= For Open Server applications of class direct_connect (access_server)
the maximum byte count is defined by the functionality of the
DirectConnect server.

Restrictions on text and image Columns

text and image columns cannot be used:

= As parameters to stored procedures. text or image values cannot
be passed to stored procedures.

« As local variables.

Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Topics and Issues

= In order by, compute, or group by clauses.

= Inindexes.

< In subqueries.

= In where clauses, except with the keyword like.

= Injoins.

Limits of @ @textsize

select statements return text and image data up to the limit specified in
the global variable @@textsize. The set textsize command is used to
change this limit. The initial value of @@textsize is 32K; the maximum
value for @@textsize is 2147MB.

Odd Bytes Padded

image values of less than 255 bytes that have an odd number of bytes
are padded with a leading zero (an insert of "Oxaaabb" becomes
"Ox0aaabb"). It is an error to insert an image value of more than 255
bytes if the value has an odd number of bytes.

Converting text and image Datatypes

You can explicitly convert text values to char or varchar and image
values to binary or varbinary with the convert function, but you are
limited to the maximum length of the character and binary datatypes,
255 bytes. If you do not specify the length, the converted value has a
default length of 30 bytes. Implicit conversion is not supported.

Pattern Matching with text Data

Use the patindex function to search for the starting position of the first
occurrence of a specified pattern in a text, varchar, or char column. The
% wildcard character must precede and follow the pattern (except
when you are searching for the first or last character).

You can use the like keyword to search for a particular pattern. The
following example selects each text data value from the blurb column
of the texttest table that contains the pattern “Straight Talk%”:

select blurb from texttest
where blurb like "Straight Talk%"

Component Integration Services User's Guide 2-17

Topics and Issues

Adaptive Server Enterprise Release 11.5.x

2-18

Entering text and image values

The DB-Library™ functions dbwritetext and dbmoretext and the Client-
Library function ct_send_data are the most efficient ways to enter text
and image values.

When inserting text or image values using the insert command, the
length of the data is limited to 450 bytes.

readtext using bytes

If you use the readtext using bytes command on a text column, and the
combination of size and offset result in the transmission of a partial
character, then errors result.

text and image with bulk copy

When you use bulk copy to copy text and image values to a remote
server, the server must store the values in data pages before sending
them to the remote server. Once the values have been issued to the
remote server, the data pages are released. Data pages are allocated
and released row by row. Users must be aware of this for the
following reasons:

< The overhead of allocating and releasing data pages impacts
performance.

= The data pages are allocated in the database where the table
resides, so the database must be large enough to accommodate
enough data pages for the largest text and image values that exist
for any given row.

Error Logging

Processing of text and image data (with remote servers only) can be
logged by using trace flag 11207.

text and image Data with Server Class sql_server

= A pointer in a text or image column is assigned when the column
is initialized. Before you can enter text or image data into a
column, the column must be initialized. This causes a 2K page to
be allocated on the remote or Adaptive Server. To initialize text or
image columns, use the update or a non-null insert command. See
writetext for more information.

Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Topics and Issues

Before you use writetext to enter text data or readtext to read it, the
text column must be initialized. Use update or insert non-null data
to initialize the text column, and then use writetext and readtext.

Using update to replace existing text and image data with NULL,
reclaims all of the allocated data pages, except the first page, in
the remote server.

writetext, select into, DB-Library functions, or Client-Library
functions must be used to enter text or image values that are larger
than 450 bytes.

insert select cannot be used to insert text or image values.
readtext is the most efficient way to access text and image data.

text and image Data with Server Class direct_connect (access_server)

Specific DirectConnect servers support text and image data to
varying degrees. Refer to the DirectConnect documentation for
information on text and image support.

The server uses the length defined in the global variable
@@textsize for the column length. Before issuing create table, the
client application should set @@textsize to the required length by
invoking the set textsize command.

For DirectConnect servers that support text and image datatypes
but do not support text pointers, the following restrictions apply:

- The writetext command is not supported.
- The readtext command is not supported.

- Client-Library functions that use text pointers are not
supported.

- DB-Library functions that use text pointers are not supported.

For DirectConnect servers that support text and image datatypes
but do not support text pointers, some additional processing is
performed to allow the following functions to be used:

- patindex
- char_length
- datalength

If text pointers are supported, the server performs these
functions by issuing an RPC to the DirectConnect server.

Component Integration Services User's Guide 2-19

Internal Operations

Adaptive Server Enterprise Release 11.5.x

Internal Operations

= For DirectConnect servers that do not support text pointers, the
server stores data in the sysattributes system table. Data pages are
preallocated on a per column per row basis. The column size is
determined by the @@textsize global variable. If this value is not
sufficient an error is returned.

= Specific DirectConnect servers may or may not support pattern
matching against the text datatype. If a DirectConnect server does
not support this pattern matching, the server copies the text value
to internal data pages and performs the pattern matching
internally. The best performance is seen when pattern matching
is performed by the DirectConnect server.

= writetext, selectinto, or insert...select must be used to enter text or image
values that exceed 450 bytes.

= selectinto and insert...select can be used to insert text or image values,
but the table must have a unique index.

db2 Server Issues

text and image datatypes for a server of class db2 are not supported. If
you need text and image datatypes, you must use a DirectConnect
server.

2-20

This section describes the underlying operations on remote servers
performed by Component Integration Services on behalf of client
applications.

Connection Management

When connecting to a remote server on behalf of a client, the server
uses Client-Library functions. Once the first connection to a remote
server is established for a given client, that connection remains open
until the client disconnects from Component Integration Services.

For servers of class direct_connect (access_server) and sgl_server
(release 10.0 and later), only one connection is established to that
server for each client that requires access to that server. All
interaction with these servers is done within this single connection
context.

However, for pre-release 10.0 SQL Server, and servers of class db2
and generic, it may be necessary to establish more than one

Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Internal Operations

connection to that server in order to process a single client request. In
this case, multiple connections are established as needed, and all but
one are closed when the Transact-SQL command requiring them has
completed.

Query Processing

The query processing steps taken when Component Integration
Services is enabled are similar to the steps taken by Adaptive Server,
except for the following:

= Ifaclient connection is made in passthrough mode, the Adaptive
Server query processing is bypassed and the SQL text is
forwarded to the remote server for execution.

= When select, insert, delete or update statements are submitted to the
server for execution, additional steps may be taken by
Component Integration Services to improve the query’s
performance, if local proxy tables are referenced.

Component Integration Services User's Guide 2-21

Internal Operations Adaptive Server Enterprise Release 11.5.x

The query processing steps are shown in Figure 2-1. An overview of
these steps follows.

’ parse

Y

’ normalize

Y

’ preprocess I

‘ Adaptive Server
no optimization/plan
> generation

Can Component
Integration Services
handle the entire
statement?

Component Integratio
Services plan generat

Component Integrati
Services remote
location optimizer

’ execute I

Component Integration Server
Services access methofls access methods

[] Shaded boxes indicate steps taken by Component Integration Services.

Figure 2-1: Query processing steps

Query Parsing

The SQL parser checks the syntax of incoming SQL statements, and
raises an error if the SQL being submitted for execution is not
recognized by the Transact-SQL parser.

Query Normalization

During query normalization, each object referenced in the SQL
statement is validated. Query normalization verifies the objects

2-22 Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Internal Operations

referenced in the statement exist, and the datatypes are compatible
with values in the statement.

Example
select * from t1 where c1 = 10

The query normalization stage verifies that table t1 with a column
named c1 exists in the system catalogs. It also verifies that the
datatype of column cl is compatible with the value 10. If the
column’s datatype is datetime, for example, this statement is rejected.

Query Preprocessing

Query preprocessing prepares the query for optimization. It may
change the representation of a statement such that the SQL statement
Component Integration Services generates will be syntactically
different from the original statement.

Preprocessing performs view expansion, so that a query can operate
on tables referenced by the view. It also takes steps such as
reordering expressions and transforming subqueries to improve
processing efficiency. For example, subquery transformation may
convert some subgueries into joins.

Decision Point

After preprocessing, a decision is made as to whether Component
Integration Services or the standard Adaptive Server query
optimizer will handle optimization.

Component Integration Services will handle optimization (using a
feature known as quickpass mode) when:

= Every table represented in the SQL statement resides within a
single remote server.

= The remote server is capable of processing all the syntax
represented by the statement.

Component Integration Services determines the query
processing capabilities of the remote server by its server class.
Servers with server class sql_server, db2, or generic have implied
capabilities. For example, Component Integration Services
assumes that any server configured as server class sgl_server is
capable of processing all Transact-SQL syntax.

Component Integration Services User's Guide 2-23

Internal Operations

Adaptive Server Enterprise Release 11.5.x

2-24

For remote servers with server class access_server or
direct_connect, Component Integration Services issues an RPC to
ask the remote server for its capabilities the first time a
connection is made to the server. Based on the server’s response
to the RPC, Component Integration Services determines the
syntax of the SQL it will forward to the remote server.

= The following is true of the SQL statement:
- Itis aselect, insert, delete, or update statement

- Ifitisaninsert, update, or delete statement, there are no identity or
timestamp columns, or referential constraints

- It contains no text or image columns
- It contains no compute by clauses

- It contains no for browse clauses

- Itis not a select...into statement

- Itis not a cursor-related statement (for example, fetch, declare,
open, close, deallocate, update or delete statements that include where
current of cursor)

If the above conditions are not met, quickpass mode cannot be used,
and the standard Adaptive Server query optimizer handles
optimization.

Component Integration Services Plan Generation

If quickpass mode can be used, Component Integration Services
produces a simplified query plan. When statements contain proxy
tables, they are executed more quickly when processed by the remote
server than when processed through the Adaptive Server plan
generation phase.

Adaptive Server Optimization and Plan Generation

Adaptive Server optimization and plan generation evaluates the
optimal path for executing a query and produces a query plan that
tells the Adaptive Server how to execute the query.

If the update statistics command has been run for the tables in the
query, the optimizer has sufficient data on which to base decisions
regarding join order. If the update statistics command has not been run,
the Adaptive Server defaults apply.

Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Internal Operations

For more information on Adaptive Server optimization, refer to
Chapter 7, “The Adaptive Server Query Optimizer,” in the
Performance and Tuning Guide.

Component Integration Services Remote Location Optimizer

Adaptive Server generates a query plan containing the optimal join
order for a multitable query without regard to the storage location of
each table. If remote tables are represented in the query, Component
Integration Services, which takes the storage location into account,
performs additional optimization for the following conditions:

< Join processing
= Aggregate processing

In order to make intelligent evaluations of a query to improve
performance in the above areas, statistics are required. These are
obtained by executing the command update statistics for a specific
table.

update statistics

When updating statistics on a remote table, Component Integration
Services intercepts the request and provides meaningful statistics for
the remote table and all of its indexes (if any). The result of executing
an update statistics command is a distribution statistics page stored in
the database, for each index.

In Adaptive Server, data used to create this distribution page comes
from local index pages. When you are updating statistics on a remote
table, the data used to create the distribution statistics page comes
from the keys used to make up the index on the remote table.

The server issues a query to the remote server to obtain all columns
making up the index, sorted according to position within the index.
For example, if tablel has an index made up of two columns, coll and
col2, then the query to that server is sent as follows when update
statistics is executed:

select coll, col2 from tablel order by col1, col2

The results are then used to construct a distribution page in the
format needed by the optimizer.

The detailed distribution statistics are used to determine optimal join
order. This gives the server the ability to generate optimal queries
against remote databases that may not support cost-based query
optimization.

Component Integration Services User's Guide 2-25

Internal Operations Adaptive Server Enterprise Release 11.5.x

On large tables, update statistics can take a long time. To speed up the
process, turn on trace flag 11209 before executing update statistics. This
trace flag instructs update statistics to obtain only row counts on remote
tables. The Adaptive Server query optimizer uses the row count
information to make assumptions about the selectivity of a particular
index. While these assumptions are not as complete as the full
distribution statistics, they provide the minimal information needed
to handle query optimization.

Join Processing

Component Integration Services remote location optimizer isolates
join conditions represented in the query plan. For each remote server
that is represented by two or more tables in the join, Component
Integration Services modifies the query plan to appear as though a
single virtual table is being processed for that server. Component
Integration Services then forwards the join conditions to the remote
server during query execution.

For example, if a query involves four tables, two that are located on
the remote server SERVERA and two that are located on the remote
server SERVERB, Component Integration Services processes the
query as though it were a two-way join. The following query:

select * from Al, A2, B1, B2
where Al.id = A2.id and A2.id = B1l.id
and Bl.id =B2id

gets converted to:
select * from V1, V2 where V1.id = V2.id

V1 is the virtual table representing the results of the join between Al
and A2 (processed by SERVERA), and V2 is the virtual table
representing the results of the join between B1 and B2 (processed by
SERVERB). Since the Adaptive Server uses nested iteration (looping)
to process inner tables of a join, the query is processed as follows:

open cursor on V1
fetch V1 row
for each row in V1
open a cursor on V2
fetch V2
route results V1, V2 to client
close cursor on V2

2-26 Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Internal Operations

Aggregate Processing

Component Integration Services optimizes queries containing
ungrouped aggregate functions (min, max, sum, and count) by passing
the aggregate to the remote server if the remote server is capable of
performing the function.

For example, consider the following query on the remote table Al:
select count(*) from Al where id > 100

The count(*) aggregate is forwarded to the remote server that owns Al.

Query Execution

The query execution stage receives a query plan, generated either as
a result of an adhoc query or a stored procedure, and executes each
step of the plan, according to the information stored in the plan.
Query plan structures are tagged with information that indicates
which access method is to be invoked. If a table is local, then normal
Adaptive Server access methods used to process a query are
activated as required by the plan execution logic. If the table is
remote, then Component Integration Services access methods are
invoked to process each table (or virtual table) represented in the

query.

Component Integration Services Access Methods

The Component Integration Services access methods interact with
the remote servers that contain objects represented in a query. In
Adaptive Server 11.5, all interaction is done through Client-Library.

When an entire statement can be forwarded to the remote server, the
statement is taken from the query plan. After any parameters have
been substituted into the text of the statement, the entire statement is
forwarded to the appropriate remote server.

When the Adaptive Server optimizer and plan generator are
involved, the statement or fragment of a statement that is to be
executed remotely is constructed from data structures contained
within the query plan. The statement or fragment of a statement is
then forwarded to the appropriate remote server.

The results from the remote servers are then converted into the
necessary internal data types, and processed as if they were derived
from local tables.

Component Integration Services User's Guide 2-27

Internal Operations

2-28

When an order by is processed by the remote server, the results may be
different from what Adaptive Server would return for the same
query, because the sort order is determined by the remote server, not

by Adaptive Server.

Query Plan Execution

Any command that could affect a table is checked by the server to
determine whether the object has a local or remote storage location.
If the storage location is remote, then the appropriate access method
is invoked when the query plan is executed in order to apply the
requested operation to the remote objects. The following commands
are affected if they operate on objects that are mapped to a remote

storage location:

Understanding Component Integration Services

alter table

begin transaction
commit

create index

create table

create existing table
deallocate table
declare cursor
delete

drop table

drop index

execute

fetch

insert

open

prepare transaction
readtext

rollback

select

set

setuser

Adaptive Server Enterprise Release 11.5.x

Adaptive Server Enterprise Release 11.5.x Internal Operations

« truncate table
= update
* update statistics

e writetext

create table Command

When the server receives a create table command, the command is
interpreted as a request for new table creation. The server invokes
the access method appropriate for the server class of the table that is
to be created, if it is remote, and then creates the table. If this
command is successful, system catalogs are updated, and the object
appears to clients as a local table in the database in which it was
created.

The create table command is reconstructed in a syntax that is
appropriate for the server class. For example, if the server class is db2,
then the command is reconstructed using DB2 syntax before being
passed to the remote server. Datatype conversions are made for
datatypes that are unique to the Adaptive Server environment.

Datatype conversion charts for each server class are provided in
Chapter 4. Some server classes have restrictions on what datatypes
can and cannot be supported. These are also described in Chapter 4,
“Server Classes.”

The create table command is passed to remote servers as a language
request.

create existing table Command

When a create existing table command is received, it is interpreted as a
request to import metadata from the remote or external location of
the object for updating system catalogs. Importing this metadata is
performed by means of three RPCs sent to the remote server with
which the object has been associated:

= sp_tables — verifies that the remote object actually exists.

= sp_columns — obtains column attributes of the remote object for
comparison with those defined in the create existing table command.

* sp_statistics — obtains index information in order to update the
local system table, sysindexes.

Component Integration Services User's Guide 2-29

Internal Operations

Adaptive Server Enterprise Release 11.5.x

2-30

alter table Command

When the server receives the alter table command, it passes the
command to an appropriate access method if:

= The object on which the command is to operate has been
associated with a remote or external storage location.

= The command consists of an add column request. Requests to add
or drop constraints are not passed to the access methods; instead,
they are handled locally.

The alter table command is passed to remote servers as a language
request.

create index Command

When the server receives the create index command, it passes the
command to an appropriate access method, if the object on which the
command is to operate has been associated with a remote or external
storage location.

The command is reconstructed using a syntax appropriate for the
class and is passed to the remote server for execution.

The create index command is passed to remote servers as a language
request.

drop table Command

When the server receives the drop table command for a remote table, a
check is made to determine whether the table to be dropped has been
created with the existing option. If so, references to the object within
the system tables are removed, and the operation is complete.

If the table was not created with the existing option, the command is
passed to an appropriate access method, if the object on which the
command is to operate has been associated with a remote or external
storage location.

The drop table command is reconstructed using a syntax appropriate
for the class and is passed to the remote server for execution.

This command is passed to remote servers as a language request.

In all cases, references to the object from within the system catalogs
are removed.

Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Internal Operations

drop index Command

When the server receives the drop index command, it passes the
command to an appropriate access method, if the object on which the
command is to operate has been associated with a remote or external
storage location.

The drop index command is reconstructed using a syntax appropriate
for the class and is passed to the remote server for execution.

This command is passed to remote servers as a language request.

truncate table Command

When the server receives the truncate table command, it passes the
command to an appropriate access method, if the object on which the
command is to operate has been associated with a remote or external
storage location.

The command is reconstructed using a syntax appropriate for the
class and is passed to the remote server for execution. Since this
syntax is unique to the Adaptive Server environment, a server of
class db2 would receive a delete command with no qualifying where
clause:

delete from t1

The truncate table command is passed to remote servers as a language
request.

Triggers

Component Integration Services allows triggers on proxy tables;
however their usefulness is limited. It is possible to create a trigger on
a proxy table and the trigger will be invoked just as it would be for a
normal Adaptive Server table. However, before and after image data
is not written to the log for proxy tables because the insert, update and
delete commands are passed to the remote server. The inserted or
deleted tables, which are actually views into the log, contain no data
for proxy tables. Users cannot examine the rows being inserted,
deleted, or updated, so a trigger with a proxy table has limited value.

Referential Integrity

You can use Component Integration Services to maintain referential
integrity between remote tables. See the section on constraints in the

Component Integration Services User's Guide 2-31

Adaptive Server Features Not Supported by CIS Adaptive Server Enterprise Release 11.5.x

Transact-SQL User’s Guide. During update, insert, and delete operations,
Component Integration Services checks the referenced table. If the
check fails, the transaction is rolled back.

Security Issues

When establishing a connection to a remote Adaptive Server, Client-
Library functions are used instead of a site handler when either
cis_rpc_handling or set transactional_rpc is on. This method of establishing
connections prevents the remote server from distinguishing these
connections from those of other clients. Thus, any remote server
security configured on the remote server to allow or disallow
connections from a given server does not take effect.

Another Adaptive Server with Component Integration Services
enabled cannot use trusted mode for remote server connections. This
forces the Adaptive Server to be configured with all possible user
accounts if it is going to be used with Component Integration
Services.

Passwords are stored internally in encrypted form.

Trusted Mode

Trusted mode can be used only between two servers with site
handlers. When Component Integration Services establishes a
Client-Library connection to a remote server, trusted mode cannot be
used. If a trusted mode connection is needed, use set cis_rpc_handling
off.

For more information about trusted mode, see Chapter 8, “Managing
Remote Servers,” in the Security Administration Guide.

Adaptive Server Features Not Supported by CIS

Parallel Processing

Parallel processing is disabled while Component Integration
Services accesses remote tables.

2-32 Understanding Component Integration Services

Adaptive Server Enterprise Release 11.5.x Adaptive Server Features Not Supported by CIS

External Security

Clients connecting to Adaptive Server can use external security
features when Component Integration Services is enabled. However,
Component Integration Services does not incorporate security
features when communicating with remote servers. Clients using
external security features should use sp_addexternlogin to access
remote servers.

Directory Services

The Directory Services feature is not used by Component
Integration Services.

Component Integration Services User's Guide 2-33

Adaptive Server Features Not Supported by CIS Adaptive Server Enterprise Release 11.5.x

2-34 Understanding Component Integration Services

Using Component Integration
Services

This chapter provides information on defining objects, configuring,
tuning, and using Component Integration Services.

= Getting Started with Component Integration Services —is a
tutorial, to assist first-time users in completing the basic
Component Integration Services configuration steps.

= Configuration and Tuning — provides information for System
Administrators. See the System Administration Guide, the
Performance and Tuning Guide, and the Adaptive Server Reference
Manual for additional information.

Getting Started with Component Integration Services

This section is intended to help first-time users get Component
Integration Services running quickly. It provides a step-by-step
guide to configuring the server to access remote data sources. It
includes instructions for:

« Adding a remote server
< Mapping remote objects to local proxy tables
= Performing joins between remote tables

Routine system administration tasks such as starting and stopping
Adaptive Server, creating logins, creating groups, adding users,
granting permissions, and password administration are explained in
the Adaptive Server documentation.

Adding a Remote Server

You can use the server to access data on remote servers. Before you
can do this, you must configure Component Integration Services.

Follow these steps to configure the server to access remote data:

Overview of the Procedure

1. Add the remote server to the interfaces file, using the dsedit or
dscp utility.

2. Add the name, server class, and network name of the remote
server to system tables, using the system procedure sp_addserver.

Component Integration Services User’s Guide 31

Getting Started with Component Integration Services Adaptive Server Enterprise Release 11.5.x

3. Assign an alternate login name and password, using the system
procedure sp_addexternlogin. This step is optional.

Step 1: Add the Remote Server to the Interfaces File

Use the dsedit or dscp utility to edit the interfaces file located in the
$SYBASE directory on the UNIX platform:

« |n UNIX, the interfaces file is called interfaces.
= InWindows NT, the interfaces file is called sql.ini.

For acomplete discussion of the interfaces file, see the Adaptive Server
configuration guide for your platform.

Step 2: Create Server Entries in System Tables

Use the system procedure sp_addserver to add entries to the sysservers
table. sp_addserver creates entries for the local server and an entry for
each remote server that is to be called. The sp_addserver syntax is:

sp_addserver server_name [,server_class
[,network_name]]

where:

= server_name is the name used to identify the server. It must be
unique.

= server_class is one of the supported server classes. Server classes
are defined in Chapter 4, “Server Classes.” The default value is
sgl_server. If server_class is set to local, network_name is ignored.

< network_name is the server name in the interfaces file. This name
may be the same as server_name, or it may differ. The
network_name is sometimes referred to as the physical name.

Example

The following examples create entries for the local server named
DOCS and for the remote server CTOSDEMO with server class
sql_server.

sp_addserver DOCS, local
sp_addserver CTOSDEMO, sql_server, CTOSDEMO

3-2 Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x Getting Started with Component Integration Services

Step 3: Add an Alternate Login and Password

Use the system procedure sp_addexternlogin to assign an alternate login
name and password to be used when communicating with a remote
server. This step is optional. The syntax for sp_addexternlogin is:

sp_addexternlogin remote_server , login_name
remote_name [, remote_password]

where:

= remote_server is the name of the remote server. The remote_server
must be known to the local server by an entry in the
master.dbo.sysservers table.

= login_name is an account known to the local server. login_name
must be represented by an entry in the master.dbo.syslogins table.
The “sa” account, the “sso”” account, and the login_name account
are the only users authorized to modify remote access for a given
local user.

< remote_name is an account known to the remote_server and must be
a valid account on the node where the remote_server runs. This is
the account used for logging into the remote_server.

< remote_password is the password for remote_name.

Examples
sp_addexternlogin FRED, sa, system, sys_pass

Allows the local server to gain access to remote server FRED
using the remote name “system” and the remote password
“sys_pass” on behalf of user “sa”.

sp_addexternlogin OMNI1012, bobj, jordan, hitchpost

Tells the local server that when the login name “bobj” logs in,
access to the remote server OMNI1012 is by the remote name
“jordan” and the remote password “hitchpost”. Only the “bobj”
account, the “sa” account, and the *“sso” account have the
authority to add or modify a remote login for the login name
“bobj”.

Verifying Connectivity

Use the connect to server_name command to verify that the
configuration is correct. connect to requires that “sa” explicitly grant
connect authority to users other than “sa.” The connect to command
establishes a passthrough mode connection to the remote server. This

Component Integration Services User's Guide 3-3

Getting Started with Component Integration Services Adaptive Server Enterprise Release 11.5.x

passthrough mode remains in effect until you issue a disconnect
command.

Mapping Remote Objects to Local Proxy Tables

Location transparency of remote data is enabled through remote
object mapping.

Once a remote server has been properly configured, users can
reference the remote objects that have been defined. Users can create
new tables on remote servers and can define the schema for an
existing table on a remote server.

Overview of the Procedure

1. Use the stored procedure sp_addobjectdef to define the storage
location of a remote object.

2. Use the create table or the create existing table command to map the
remote table schema to the server.

Step 1: Define the Storage Location of a Remote Object

The stored procedure sp_addobjectdef defines the storage location of a
remote object. This procedure allows the user to associate a remote
object name with a local table name. The remote object may or may
not exist before the storage location is defined. The syntax for
sp_addobjectdef is:

sp_addobjectdef object_name, " object_loc
[, " object type "]

where:

= object_name is the local proxy table name to be used by
subsequent statements. object_name takes the form:

dbname.owner.object

where dbname and owner are optional and represent the local
database and owner name. If not present, the object is defined in
the current database owned by the current owner. If either
dbname or owner is specified, the entire object_name must be
enclosed in quotes. If only dbname is present, a placeholder is
required for owner.

= object_loc is the storage location of the remote object. It takes the
form:

3-4 Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x Getting Started with Component Integration Services

server_name.dbname.owner.object;aux1.aux2

where:

server_name is the name of the server that contains this remote
object (required.)

dbname is the name of the database managed by the remote
server that contains this object (optional). If the server is class
db2, this is the location_name portion of a DB2 table name.

owner is the name of the remote server user that owns the
remote object (optional). If the server is class db2, this is the DB2
authorization ID.

object is the name of the remote table, view, or rpc.

auxl.aux2 is a string of characters that is passed to the remote
server during a create table or create index command as the
segment name; the meaning of this string is dependent upon
the class of the server that receives it. If the server is class db2,
auxl is the DB2 database in which to place the table, and aux2 is
the DB2 tablespace in which to place the table. aux1.aux2 is
optional.

= object_type is the type of remote object. It can be table, view, or rpc.
This parameter is optional; the default is table. When present, the
object_type option must be enclosed in quotes.

Example

To map the proxy table authors to the remote authors table, use the
following syntax for the database shown in Figure 3-1:

sp_addobjectdef authors, "ORACLEDC...authors", "table"

MYCIS Server ORACLEDC server

authors
proxy table

authors table

Figure 3-1: Using sp_addobjectdef to map a remote table to a proxy table

Component Integration Services User's Guide 35

Getting Started with Component Integration Services Adaptive Server Enterprise Release 11.5.x

3-6

Step 2: Map Remote Table Schema to Adaptive Server

Once you have defined the storage location, you can create the table
as a hew object or as an existing object. If the table does not exist at
the remote storage location, use the create table syntax. If it already
exists, use the create existing table syntax. If the object type is rpc, only
the create existing table syntax is allowed.

When a create existing table statement is received and the object type is
either table or view, the existence of the remote object is checked using
the catalog stored procedure sp_tables.

If the object exists, column and index attributes are obtained and
compared with those defined for the object in the create existing table
command. The server checks the column name, type, length and null
property and adds index attributes to the sysindexes system table.

Once the object has been created, either as a new or existing object,
users can query the remote object by using the local proxy name.

See create table and create index in the Adaptive Server Reference Manual.

Join Between Two Remote Tables

With Component Integration Services, you can perform joins across
remote tables. The following steps show how to join two Adaptive
Server tables:

Overview of the Procedure

Add the remote servers to the interfaces file.

Define each remote server using sp_addserver.

Define each remote object using sp_addobjectdef.

Map the remote tables to the server using create existing table.

a v D oE

Perform the join using select.

Step 1: Add the Remote Servers to the Interfaces File

Edit the interfaces file using the dsedit utility.

Step 2: Define the Remote Servers

Use the system procedure sp_addserver to add entries to the sysservers
system table. On the server originating the call, there must be an

Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x Getting Started with Component Integration Services

entry for each remote server that is to be called. The sp_addserver
syntax is:

sp_addserver server_name [,server_class]
[,network_name]

where:

= server_name is the name used to identify the server. It must be
unique.

= server_class is one of the supported server classes, defined in
Chapter 4, “Server Classes.” The default value is sql_server. If the
value is local, network_name is ignored.

= network_name is the server name in the interfaces file. This name
may be the same as the server_name specification, or it may be
different. If network_name is not provided, the default value is the
server_name.

Example

The following examples create entries for the local server named
DOCS and for the remote server SYBASE of class sql_server.

sp_addserver DOCS, local
sp_addserver CTOSDEMO, sql_server, SYBASE

Step 3: Define the Remote Objects

Use sp_addobjectdef to map a local object to an external storage
location.

The syntax for the sp_addobjectdef procedure is as follows:

sp_addobjectdef object_name , " object_loc
[" object type "]

The object_name argument identifies a table that does not yet exist,
but is about to be created. object_name takes the form:

dbname.owner.object

dbname and owner are optional. Only the System Administrator may
use an owner name other than his or her own. The object_loc
identifies the storage location of the remote object and takes one of
two forms, depending on the value of object_type. It takes the form:

server_name.dbname.owner.object

server_name and object are required. doname and owner are optional.

Component Integration Services User's Guide 37

Getting Started with Component Integration Services Adaptive Server Enterprise Release 11.5.x

3-8

Example:

sp_addobjectdef accounts,
"SYBASE.pubs.dbo.accounts", "table"

Maps the table accounts to the remote object pubs.dbo.accounts in the
remote server named SYBASE.

See the Adaptive Server Reference Manual for a complete discussion of
sp_addobjectdef.

Step 4: Map the Remote Tables to Adaptive Server

The create existing table command enables the definition of existing
(proxy) tables. The syntax for this option is similar to the create table
command and reads as follows:

create existing table table_name (column_list)
[on segment name]

When the server processes this command, it does not create a new
table. Instead, it checks the table mapping and verifies the existence
of the underlying object. If the object does not exist (either host data
file or remote server object), the server rejects the command and
returns an error message to the client.

After you define an existing table, it is good practice to issue an update
statistics command for that table. This helps the query optimizer make
intelligent choices regarding index selection and join order.

Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x Getting Started with Component Integration Services

Example

Figure 3-2 illustrates the remote Adaptive Server tables publishers
and titles in the sample pubs2 database mapped to a local server.

MYCIS Server
myown database
owner “sa”

books
proxy table

publishers
proxy table

SYBASE server
pubs2 database
owner “dbo”

publishers table
pub_id| pub_name |city

titles table
title id| title type

Figure 3-2: Defining remote tables in a local server

Mapping the Remote Tables

The steps required to produce the mapping illustrated above are as
follows:

1. Define a server named SYBASE. Its server class is sql_server, and

its name in the interfaces file is SYBASE:
exec sp_addserver SYBASE, sql_server, SYBASE

Define a remote login alias. This step is optional. User “sa” is
known to remote server SYBASE as user “sa,” password
“timothy””:

exec sp_addexternlogin SYBASE, sa, sa, timothy
Add an object definition for the remote publishers table:

exec sp_addobjectdef publishers,
"SYBASE.pubs2.dbo.publishers”, "table"

Add an object definition for the remote titles table, to be known
locally as books:

exec sp_addobjectdef books,
"SYBASE.pubs2.dbo.titles", "table"

Component Integration Services User's Guide 39

Configuration and Tuning

Adaptive Server Enterprise Release 11.5.x

5. Define the remote publishers table:

create existing table publishers

(
pub_id char(4) not null,
pub_name varchar(40) null,
city varchar(20) null,
state char(2) null

)

6. Define the remote titles table:

create existing table books

(
title_id tid not null,
title varchar(80) not null,
type char(12) not null,
pub_id char(4) null,
price money null,
advance money null,
total_sales int null,
notes varchar(200) null,
pubdate datetime not null,
contract bit not null

)

7. Update statistics in both tables to ensure reasonable choices by
the query optimizer:

update statistics publishers

update statistics books

Step 5: Perform the Join

Use the select statement to perform the join.

select Publisher = p.pubname, Title = b.title
from publishers p, books b

where p.pub_id = b.pub_id

order by p.pubname

Configuration and Tuning

3-10

This section is intended for System Administrators. It provides
information about configuration, tuning, trace flags, backup and
recovery, and security issues.

The System Administrator or database owner may elect to use the
server in such a way as to optimize performance or to allow use by a

Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x Configuration and Tuning

required number of clients. Configuration choices might involve
being able to review total numbers of reads and writes for a given
SQL command.

Once an application is up and running, the System Administrator
should monitor performance and may choose to customize and fine-
tune the system. The server provides tools for these purposes. This
section explains:

= Changing system parameters with the sp_configure procedure

= Using update statistics to ensure that Component Integration
Services makes the best use of existing indexes

= Monitoring server activity with the dbcc command.

e Setting trace flags

= Executing ddigen and related backup and recovery issues
= Determining database size requirements

Using sp_configure

The configuration parameters in the sp_configure system procedure
control resource allocation and performance. The System
Administrator can reset these configuration parameters in order to
tune performance and redefine storage allocation. In the absence of
intervention by the System Administrator, the server supplies
default values for all the parameters.

The procedure for resetting configuration parameters is:

= Execute the system procedure sp_configure, which updates the
values field of the system table master..sysconfigures.

= Restart the server if you have reset any of the static configuration
parameters. The parameters listed below are dynamic; all others
are static:

cis rpc handling

Cis cursor rows

cis connect timeout

cis bulk insert batch size

cis packet size

Component Integration Services User's Guide 311

Configuration and Tuning Adaptive Server Enterprise Release 11.5.x

sysconfigures Table

The master..sysconfigures system table stores all configuration options.
It contains columns identifying the minimum and maximum values
possible for each configuration parameter, as well as the configured
value and run value for each parameter.

The status column in sysconfigures cannot be updated by the user.
Status 1 means dynamic, indicating that new values for these
configuration parameters take effect immediately. The rest of the
configuration parameters (those with status 0) take effect only after
the reconfigure command has been issued and the server restarted.

You can display the configuration parameters currently in use (run
values) by executing the system procedure sp_configure without
giving it any parameters.

Changing the Configuration Parameters

The stored procedure sp_configure displays all the configuration
values when it is used without an argument. When used with an
option name and a value, the server resets the configuration value of
that option in the system tables.

See the System Administration Guide for a complete discussion of
sp_configure with syntax options.

To see the Component Integration Services options enter:
sp_configure "Component Integration Services"

To change the current value of a configuration parameter, execute
sp_configure as follows:

sp_configure parameter ", value

Component Integration Services Configuration Parameters

The following configuration parameters are unique to Component
Integration Services:

 enable cis

* max cis remote connections
* max cis remote servers

« cis bulk insert batch size

* cis connect timeout

® Cis cursor rows

3-12 Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x Configuration and Tuning

* cis packet size

= cisrpc handling

enable cis

Use this parameter with sp_configure to enable Component
Integration Services as follows:

1. Log into Adaptive Server as the System Administrator and issue
the following command:

sp_configure "enable cis", 1
2. Restart Adaptive Server.

Issuing the command sp_configure "enable cis", 0 disables Component
Integration Services after restarting the server.

max cis remote connections

The server establishes Client-Library connections to remote servers
on behalf of clients. More than one connection per client may be
required if multiple servers are being accessed by that client. By
default, Component Integration Services allows up to 4 connections
per user to be made simultaneously to remote servers. For example,
if you set the maximum number of users to 25, up to 100
simultaneous Client-Library connections are allowed by Component
Integration Services.

If this number does not meet the needs of your installation, you can
override the setting by specifying how many outgoing Client-
Library connections you want the server to be able to make at one
time.

max cis remote servers

This configuration parameter allows you to specify how many
concurrent servers can be accessed from within the server using
Client-Library connections. The default is 25.

cis bulk insert batch size

This configuration parameter determines how many rows from the
source table(s) are to be bulk copied into the target table as a single
batch using select into, when the target table resides in an Adaptive
Server or in a DirectConnect server that supports a bulk copy
interface.

Component Integration Services User's Guide 313

Configuration and Tuning Adaptive Server Enterprise Release 11.5.x

If left at zero (the default), all rows are copied as a single batch.
Otherwise, after the count of rows specified by this parameter has
been copied to the target table, the server issues a bulk commit to the
target server, causing the batch to be committed.

If a normal client-generated bulk copy operation (such as that
produced by the bep utility) is received, the client is expected to
control the size of the bulk batch, and the server ignores the value of
this configuration parameter.

cis connect timeout

This configuration parameter determines the wait time in seconds
for a successful Client-Library connection. By default, no timeout is
provided.

CiS cursor rows

This configuration parameter allows users to specify the cursor row
count for cursor open and cursor fetch operations. Increasing this value
means more rows will be fetched in one operation. This increases
speed but requires more memory. The default is 50.

Cis packet size

This configuration parameter allows you to specify the size of
Tabular Data Stream™ (TDS) packets that are exchanged between
the server and a remote server when connection is initiated.

The default packet size on most systems is 512 bytes, which is
adequate for most applications. However, larger packet sizes may
resultin significantly improved query performance, especially when
text and image or bulk data is involved.

If a packet size larger than the default is specified, and the requested
server is release 10.0 or later, then the target server must be
configured to allow variable-length packet sizes. Adaptive Server
configuration parameters of interest in this case are:

« additional netmem
= maximum network packet size

Refer to the System Administration Guide for a complete explanation
of these configuration parameters.

3-14 Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x RPC Handling and Component Integration Services

cis rpc handling

This global configuration parameter determines whether
Component Integration Services will handle outbound RPC requests
by default. When this is enabled using sp_configure “cis rpc handling” 1,
all outbound RPCs are handled by Component Integration Services.
When you use sp_configure “cis rpc handling” 0, the Adaptive Server site
handler is used. The thread cannot override it with set cis_rpc_handling
on. If the global property is disabled, a thread can enable or disable
the capability, as required.

For more information on using the Adaptive Server site handler vs.
using Component Integration Services to handle outbound RPCs,
see “RPC Handling and Component Integration Services” on page
3-15.

RPC Handling and Component Integration Services

When Component Integration Services is enabled, you can choose
between the site handler or Component Integration Services to
handle outbound remote procedure calls (RPCs). Each of these
mechanisms is described in the following sections.

Site Handler Handling Outbound RPCs

Within an Adaptive Server, outgoing RPCs are transmitted by means
of a site handler, which multiplexes multiple requests through a
single physical connection to a remote server. The RPC is handled as
part of a multistep operation:

1. Establish connection — The Adaptive Server site handler
establishes a single physical connection to the remote server.
Each RPC requires that a logical connection be established over
this physical connection. The logical connection is routed
through the site handler of the intended remote server.

The connection validation process for these connect requests is
different than that of normal client connections. First, the remote
server must determine if the server from which the connect
request originated is configured in its sysservers table. If so, then
the system table sysremotelogins is checked to determine how the
connect request should be handled. If trusted mode is
configured, password checking is not performed. (For more
information about trusted mode, see “Trusted Mode” on page
2-32.)

Component Integration Services User's Guide 315

RPC Handling and Component Integration Services

Adaptive Server Enterprise Release 11.5.x

3-16

4.

Transmit the RPC — The RPC request is transmitted over the
logical connection.

Process results — All results from the RPC are relayed from the
logical connection to the client.

Disconnect — The logical connection is terminated.

Because of the logical connect and disconnect steps, site handler
RPCs can be slow.

Component Integration Services Handling Outbound RPCs

If Component Integration Services has been enabled, a client can use
one of two methods to request that Component Integration Services
handle outbound RPC requests:

Configure Component Integration Services to handle outbound
RPCs as the default for all clients by issuing:

sp_configure "cis rpc handling"”, 1

If you use this method to set the cis rpc handling configuration
parameter, all client connections inherit this behavior, and
outbound RPC requests are handled by Component Integration
Services. The client can, if necessary, revert back to the default
Adaptive Server behavior by issuing the command:

set cis_rpc_handling off

Configure Component Integration Services to handle outbound
RPCs for the current connection only by issuing:

set cis_rpc_handling on

This command enables cis rpc handling for the current thread only,
and will not affect the behavior of other threads.

When cis rpc handling is enabled, outbound RPC requests are not
routed through the Adaptive Server’s site handler. Instead, they are
routed through Component Integration Services, which uses
persistent Client-Library connections to handle the RPC request.
Using this mechanism, Component Integration Services handles
outbound RPCs as follows:

1.

Determines whether the client already has a Client-Library
connection to the server in which the RPC is intended. If not,
establish one.

Sends the RPC to the remote server using Client-Library
functions.

Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x dbcc Commands

dbcc Commands

3. Relays the results from the remote server back to the client
program that issued the RPC using Client-Library functions.

RPCs can be included within a user-defined transaction. In fact, all
work performed by Component Integration Services on behalf of its
client can be performed within a single connection context. This
allows RPCs to be included in a transaction’s unit of work, and the
work performed by the RPC can be committed or rolled back with
the other work performed within the transaction. This transactional
RPC capability is supported only when release 10.0 or later Servers
or DirectConnect servers are involved.

The side effects of using Component Integration Services to handle
outbound RPC requests are as follows:

= Client-Library connections are persistent so that subsequent RPC
requests can use the same connection to the remote server. This
can result in substantial RPC performance improvements, since
the connect and disconnect logic is bypassed for all but the first
RPC.

= Work performed by an RPC can be included in a transaction, and
is committed or rolled back with the rest of the work performed
by the transaction. This transactional RPC behavior is currently
supported only when the server receiving the RPC is another
Adaptive Server or a DirectConnect which supports transactional
RPCs.

« Connect requests appear to a remote server as ordinary client
connections. The remote server cannot distinguish the connection
from a normal application’s connection. This affects the remote
server management capabilities of an Adaptive Server, since no
verification is performed against sysremotelogins, and all
connections must have valid Adaptive Server login accounts
established prior to the connect request (trusted mode cannot be
used in this case). For more information about trusted mode, see
“Trusted Mode” on page 2-32.

All dbcc commands used by Component Integration Services are
available with a single dbcc entry point.

The syntax for dbcc cis is:

dbcc cis (" subcommand'[, varargl , vararg2 ..])

Component Integration Services User's Guide 317

dbcc Commands Adaptive Server Enterprise Release 11.5.x

If Component Integration Services is not configured or loaded, the
command will result in a run-time error.

The use of the dbcc cis command is unrestricted.

dbcc Options

The following dbcc options are unique to Component Integration
Services.

remcon

remcon displays a list of all remote connections made by all
Component Integration Services clients. It takes no arguments.

rusage

rusage returns a report describing the total memory used by each
Component Integration Services resource utilizing shared memory.
The report describes total configured items, number of items used,
number of items available, and total memory used for each resource.

srvdes

srvdes returns a formatted list of all in-memory SRVDES structures, if
no argument is provided. If an argument is provided, this command
syncs the in-memory version of a SRVDES with information found in
sysservers. The command takes an optional argument as follows:

srvdes, [srvid]

Trace Flags

The dbcce traceon option allows the System Administrator to turn on
trace flags within Component Integration Services. Trace flags enable
the logging of certain events when they occur within Component
Integration Services. Each trace flag is uniquely identified by a
number. Some are global to Component Integration Services while
others are spid-based and affect only the user who enabled the trace
flag. dbcc traceoff turns off trace flags.

The syntax is:

dbcc traceon (traceflag [, traceflag ..])

3-18 Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x dbcc Commands

Trace flags and their meanings are shown in Table 3-1:

Table 3-1: Component Integration Services trace flags

Trace Flag Description

11201 Logs client connect events, disconnect events, and attention
events. (global)

11202 Logs client language, cursor declare, dynamic prepare, and
dynamic execute-immediate text. (global)

11203 Logs client rpc events. (global)

11204 Logs all messages routed to client. (global)

11205 Logs all interaction with remote server. (global)

11206 Not used.

11207 Logs text and image processing. (global)

11208 Prevents the create index and drop table statements from being
transmitted to a remote server. sysindexes is updated anyway.
(spid)

11209 Instructs update statistics to obtain just row counts rather than
complete distribution statistics, from a remote table. (spid)

11210 Disables Component Integration Services enhanced remote
query optimization. (spid)

11211 Not used.

11212 Prevents escape on underscores (“_") in table names. (spid)

11213 Prevents generation of column and table constraints. (spid)

11214 Disables Component Integration Services recovery at start-up.
(global)

11215 Sets enhanced remote optimization for servers of class db2.
(global)

11216 Disables enhanced remote optimization. (spid)

11217 Disables enhanced remote optimization. (global)

Using update statistics

The update statistics command helps the server make the best decisions
about which indexes to use when it processes a query, by providing
information about the distribution of the key values in the indexes.
update statistics is hot automatically run when you create or re-create
an index on a table that already contains data. It can be used when a

Component Integration Services User's Guide 319

Shared Memory Requirements Adaptive Server Enterprise Release 11.5.x

large amount of data in an indexed column has been added,
changed, or deleted. The crucial element in the optimization of your
queries is the accuracy of the distribution steps. Therefore, if there
are significant changes in the key values in your index, rerun update
statistics on that index.

The syntax is:
update statistics table_name [index_name]

If you do not specify an index name, the command updates the
distribution statistics for all the indexes in the specified table. Giving
an index name updates statistics for that index only.

Try to run update statistics at a time when the tables you need to specify
are not heavily used. update statistics acquires locks on the remote
tables and indexes as it reads the data. If trace flag 11209 is used,
tables will not be locked.

The server performs a table scan for each index specified in the update
statistics command.

Since Transact-SQL does not require index names to be unique in a
database, you must give the name of the table with which the index
is associated.

After running update statistics, run sp_recompile so that triggers and
procedures that use the indexes will use the new distribution:

sp_recompile authors

Finding Index Names

You can find the names of indexes by using the sp_helpindex system
procedure. This procedure takes a table name as a parameter.

To list the indexes for the authors table, type:
sp_helpindex authors

To update the statistics for all of the indexes in the table, type:
update statistics authors

To update the statistics only for the index on the au_id column, type:

update statistics authors auidind

Shared Memory Requirements

When configured, the Component Integration Services shared
library draws memory from the shared memory pool initialized by

3-20 Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x Shared Memory Requirements

the server during start-up. The amount of memory required by the
shared library varies, depending on configuration values. Five
resources are managed by the shared library. To view the resources,
execute the following dbcc command:

dbcc cis("rusage")

With 25 users, the output might look like this:

Resource Configured Available Memory(Bytes)

CIS SRVDES 25 24 4900

CIS DES 500 498 134000

CIS PSS 49 48 2940

CIS RDES 100 100 20800

CIS CURSOR 400 400 49600
With 50 users, the output might look like this:

Resource Configured Available Memory(Bytes)

CIS SRVDES 25 25 4900

CIS DES 500 500 134000

CIS PSS 74 73 4440

CIS RDES 100 100 20800

CIS CURSOR 800 800 99200

The resources are configured as follows:

CIS SRVDES - configured via the max cis remote servers
configuration parameter. The default is 25. Each additional
SRVDES requires approximately 196 bytes of memory.

CIS DES - configured indirectly via the open objects configuration
parameter. For each open object, a CIS DES is allocated. Each CIS
DES requires 268 bytes of memory.

CIS PSS - configured indirectly via the user connections
configuration parameter. For each user connection, a CIS PSS is
allocated. Each CIS PSS requires 60 bytes of memory.

CIS RDES - configured indirectly via the max cis remote connections
configuration parameter. There is one CIS RDES for each remote
connection.

CIS CURSOR - configured indirectly via the user connections
configuration parameter. The number of CIS CURSOR resources
is calculated as:

4 * user connections
Each CIS CURSOR requires 124 bytes of memory.

Component Integration Services User's Guide 321

Backing Up Your System Adaptive Server Enterprise Release 11.5.x

Additional Component Integration Services Memory Requirements

In addition to the shared memory used by Component Integration
Services, dynamic memory which is not accounted for by any
configuration value is also used. Dynamic memory is used for:

= The shared library — When Component Integration Services is
configured and loaded, the shared library adds approximately
550K to the size of the server executable. This additional memory
usage does not appear anywhere, except in operating system
commands (for example, the UNIX ps command).

= Dynamic Client-Library memory — When connections to remote
servers are necessary, Component Integration Services uses
Client-Library to establish them. During query and results
processing, Client-Library dynamically allocates additional
memory and then frees it when the connection ends or statement
completes.

Backing Up Your System

There are two ways to back up objects when using Component
Integration Services:

= Using the backup utility. See the System Administration Guide for
details.

= Using the ddigen utility. Use ddigen only when you want to back up
remote schema information.

Objects Recoverable Through ddlgen

The ddlgen utility can be used to back up the following objects:
= Servers

= Database definitions

= Logins

= Remote logins

= External logins

« Database options

= Object ownership

< Users and groups

3-22 Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x Backing Up Your System

= Aliases

= Rules and defaults

« User datatypes

= Rules and defaults bound to user datatypes
= Table definitions

= Rules and defaults bound to table columns
= Local views

= Triggers

= Procedures

e Permissions

Recovering Component Integration Services Objects

Execute the ddigen utility regularly to ensure that database and
schema changes can be restored in the event of a failure. Follow these
steps to recover Component Integration Services objects:

1. Create a new installation.

2. Edit the most recent ddigen script to initialize required devices
and to update create database statements so that objects are created
on the correct devices.

3. Apply the modified ddigen script to the new installation through
the isql utility.

Transaction Log Issues

There is no automatic method for backing up transaction logs
associated with Component Integration Services. If the database has
only proxy tables, the System Administrator should use the truncate
log on chkpt option, to truncate the transaction log, every time the
server performs an automatic checkpoint. Execute this command from
the master database:

sp_dboption database_name , "trunc log on chkpt",
true

This helps avoid filling the device where the transaction log is
defined.

Databases with local tables should be backed up using the standard
Adaptive Server backup procedures.

Component Integration Services User's Guide 3-23

Backing Up Your System Adaptive Server Enterprise Release 11.5.x

Elements Not Restored

ddigen does not restore local tables. Any local tables should be backed
up using the backup server.

Additionally, ddigen does not back up the settings of configuration
parameters. To back up the configuration file, simply copy it.

3-24 Using Component Integration Services

Server Classes

This chapter provides reference material on the server classes
supported by Component Integration Services.

Each server class has a set of unique characteristics that System
Administrators and programmers need to know about in order to
configure the server for remote data access. These properties are:

= Types of servers that each server class supports
= Datatype conversions specific to the server class

= Restrictions on Transact-SQL statements that apply to the server
class

Defining Remote Servers

Use the system procedure sp_addserver to add entries to the sysservers
table for the local server and for each remote server that is to be
called. The sp_addserver syntax is:

sp_addserver server_name [,server_class
[,network_name]]

where:

= server_name is the name used to identify the server. It must be
unique.

= server_class is the type of server. The supported server classes
with the types of servers that are in each class are described in the
following sections. The default is server class sql_server.

< network_name is the server name in the interfaces file. This name
may be the same as server_name, or it may differ. The
network_name is sometimes referred to as the physical name. The
default is the same name as server_name.

Server Class sql_server

A server with server class sql_server is:

e SQL Server release 4.9 or later

= SQL Anywhere release 5.5.01 or later

= Microsoft SQL Server version 4.2 or later

Component Integration Services User’s Guide 4-1

Defining Remote Servers Adaptive Server Enterprise Release 11.5.x

e OmniConnect release 10.5 or later
e OmniSQL Server 10.1.2

« Sybase IQ™ version 11.2.1 or later

Server Class db2

A server with server class db2 is an IBM DB2 database accessed
through:

= Net-Gateway™ release 3.0 or later (Net-Gateway release 3.01 can
also be configured as server class direct_connect)

< Database Gateway (Database Gateway release 2.5 or later should
be defined as server class access_server, not db2)

= DB2-DRDA Gateway
= AS/400

e SQL/DS-DRDA

= InfoHub

Server Class direct_connect (access_server)

A server with server class direct_connect is an Open Server-based
application that conforms to the direct_connect interface specification.
Server class access_server is synonymous with server class
direct_connect. It is used for compatibility with previous releases.

Open Server-based applications using server class direct_connect are
the preferred means of accessing all external, non-Sybase data
sources.

Figure 4-1 illustrates the manner in which Adaptive Server with
Component Integration Services enabled interacts with clients and

4-2 Server Classes

Adaptive Server Enterprise Release 11.5.x

Defining Remote Servers

Open Server-based applications. The data sources are not limited to
those in this diagram:

Network

Client
application

CIS

—a

A

DirectConnect - AS/400

Adaptive Server

Client
application

Access to DirectConnect

Y

A

DirectConnect - DB2

A

DirectConnect - Oracle

-
-

Y

A

DirectConnect - Informix

Figure 4-1: Adaptive Server with CIS interacts with clients and other servers

Server Class sds

A server with server class sds conforms to the interface requirements
of a Specialty Data Store™ as described in the Adaptive Server
Specialty Data Store Developer’s Kit manual. A Specialty Data Store is
an Open Server application you design to interface with Adaptive

Server.

In this release, server class sds is synonymous to server class
direct_connect.

Component Integration Services User's Guide

Datatype Conversions Adaptive Server Enterprise Release 11.5.x

Server Class generic

The server class generic allows customers to build their own Open
Server applications to communicate with the server. The customer-
built application must conform to the interface described in the
OmniSQL Server Generic Access Module Reference Manual. The
OmniSQL Server™ Rdb Access Module and OmniSQL Server™
Informix Access Module are written to this specification.

The server class generic is supported for compatibility with existing
Open Server applications. Server class sds replaces server class
generic. New Open Server applications that are compatible with
Component Integration Services should follow the interface
spcification in the Adaptive Server Specialty Data Store Developer’s Kit
manual.

Datatype Conversions

Datatype conversion can take place whenever the server receives
data from a remote source, be it DB2, Adaptive Server, or an Open
Server-based application.

Depending on the remote datatype of each column, data is converted
from the native datatype on the remote server to a form that the local
server supports.

Datatype conversions are made when the create table, alter table and
create existing table commands are processed. The datatype conversions
are dependent on the server’s server class. See the create table, alter table
and create existing table commands in the following reference pages for
tables that illustrate the datatype conversions that take place for each
server class when the commands are processed.

Remote Server Capabilities

The first time Adaptive Server establishes a connection to a remote
server of class sds, direct_connect, or access_server, it issues an RPC
named sp_capabilities and expects a set of results in return. This result
set describes functional capabilities of the remote server so that
Component Integration Services can adjust its interaction with that
remote server to take advantage of available features. Component
Integration Services forwards as much syntax as possible to a remote
server, according to its capabilities.

4-4 Server Classes

Adaptive Server Enterprise Release 11.5.x Transact-SQL Commands

Transact-SQL Commands

The following pages are reference pages, presented in alphabetical
order, which discuss Transact-SQL commands that either directly or
indirectly affect external tables, and, as a result, Component
Integration Services. For each command, a description of its effect on
Component Integration Services, and the manner in which
Component Integration Services processes the command, is
described. For a complete description of each command, see the
Adaptive Server Reference Manual.

If Component Integration Services does not pass all of acommand’s
syntax to a remote server (such as all clauses of a select statement), the
syntax that is passed along is described for each server class.

Each command has several sections that describe it:
Function - contains a brief description of the command.

Syntax - contains a description of the full Transact-SQL syntax of the
command.

Comments - contains a general, server class-independent
description of handling by Component Integration Services.

Server Class sql_server - contains a description of handling specific
to server class sql_server. This includes syntax that is forwarded to a
remote server of class sql_server.

Server Class direct_connect - contains a description of handling
specific to server class direct_connect (access_server). This includes
syntax that is forwarded to a remote server of class direct_connect
(access_server). In this release, all comments that apply to server class
direct_connect, also apply to server class sds.

Server Class db2 - contains a description of handling specific to
server class db2. This includes syntax that is forwarded to a remote
server of class db2.

Server Class generic - contains a description of handling specific to
server class generic. This includes syntax that is forwarded to a
remote server of class generic.

Component Integration Services User's Guide 4-5

alter table Adaptive Server Enterprise Release 11.5.x

alter table

Function

Adds new columns to an existing table; adds, changes, or drops
constraints on an existing table; partitions or unpartitions an existing

table.
Syntax
alter table [database .[owner].] table_name
{add column_name datatype
[default { constant_expression | user | null}]
{[{identity | null}]
| [[constraint constraint_name]
{{unique | primary key}
[clustered | nonclustered]
[with {fillfactor | max_rows_per_page} = X]
[on segment_name]
| references [[database .] owner.] ref table
[(ref_column)]
| check (search_condition M-
{[, next_column }...
| add {[constraint constraint_name]

{unique | primary key}
[clustered | nonclustered]

(column_name [{, column_name }...])
[with {fillfactor | max_rows_per_page} = X]
[on segment_name]
| foreign key (column_name [{, column_name }...])
references [[database .] owner.] ref table
[(ref_column [{, ref_column }...])]
| check (search_condition)}
| drop constraint constraint_name
| replace column_name
default { constant_expression | user | null}
| partition number_of_partitions
| unpartition}

Comments

= Component Integration Services processes the alter table command
when the table on which it operates has been created as a proxy

4-6 Server Classes

Adaptive Server Enterprise Release 11.5.x alter table

table. Component Integration Services forwards the request (or
part of it) to the server that owns the actual object.

Only the add column_name syntax is forwarded to a remote location.
Adding and dropping constraints are local operations, which are
not processed by Component Integration Services.

When Component Integration Services forwards the alter table
command to a remote server, the table name used is the remote
table name, and the column names used are the remote column
names. These names may not be the same as the local proxy table
names.

Server Class sql_server

Component Integration Services forwards the following syntax
to a server configured as class sql_server:

alter table [database .[owner].] table_name
add column_name datatype [{identity | null}]
{L next_column 1}...

When a user defines a column with the alter table command,
Component Integration Services passes the datatype of each
column to the remote server without conversions.

Server Class direct_connect

Component Integration Services forwards the following syntax
to a remote server configured as class direct_connect:

alter table [database .[owner].] table_name
add column_name datatype [{identity | null}]
{L next_column }...

Although Component Integration Services requests a capabilities
response from a server with class direct_connect, support for alter
table is not optional. Component Integration Services forwards
the alter table command to the remote server regardless of the
capabilities response.

The behavior of the server with class direct_connect is database
dependent.

If the syntax capability of the remote server indicates Sybase
Transact-SQL, Adaptive Server datatypes are sent to the remote

Component Integration Services User's Guide 4-7

alter table Adaptive Server Enterprise Release 11.5.x

server. If the syntax capability indicates DB2 SQL, DB2 datatypes
are sent. The mapping for these datatypes is shown in Table 4-1.

Table 4-1: DirectConnect datatype conversions for alter table

Adaptive Server DirectConnect DirectConnect DB2 Syntax
Datatype Default Datatype Mode Datatype

binary(n) binary(n) char(n) for bit data

bit bit char(1)

char char char

datetime datetime timestamp

decimal(p, s) decimal(p, s) decimal(p, s)

float float float

image image varchar(n) for bit data; the

value of n is determined
by the global variable

@@textsize
int int int
money money float
numeric(p, s) numeric(p, s) decimal(p, s)
nchar(n) nchar(n) graphic(n)
nvarchar(n) nvarchar(n) vargraphic(n)
real real real
smalldatetime smalldatetime timestamp
smallint smallint smallint
smallmoney smallmoney float
timestamp timestamp varbinary(8)
tinyint tinyint smallint
text text varchar(n); the value of n is

determined by the global
variable @@textsize

varbinary(n) varbinary(n) varchar(n) for bit data

varchar(n) varchar(n) varchar(n)

4-8 Server Classes

Adaptive Server Enterprise Release 11.5.x

alter table

Server Class db2

Component Integration Services forwards the following syntax
to a remote server configured as class db2:

alter table [
add column_name datatype
{L. next_column J}...

database .[owner].]
[null]

table_name

text and image datatypes are not supported by server class db2. If

text and image datatypes are used, Component Integration
Services raises Error 11205:

Datatype <typename> is unsupported for server

<servername>.

The datatype specification contains DB2 datatypes that are mapped
from Adaptive Server datatypes. The datatype conversions are

shown in Table 4-2.

Table 4-2: DB2 datatype conversions for alter table

Adaptive Server Datatype

DB2 Datatype

binary(n) char(n) for bit data, where n <= 254
bit char(1)

char(n) char(n), where n <= 254
datetime timestamp

decimal(p, s) decimal(p, s)

float float

image Not supported

int int

money float

nchar char(n)

nvarchar varchar(n)

numeric(p, s) decimal(p, s)

real real

smalldatetime timestamp

smallint smallint

smallmoney float

tinyint smallint

text Not supported

Component Integration Services User's Guide 4-9

alter table

Adaptive Server Enterprise Release 11.5.x

4-10

Table 4-2: DB2 datatype conversions for alter table (continued)

Adaptive Server Datatype DB2 Datatype

varbinary(n) varchar(n) for bit data, where n <=254

varchar(n) varchar(n), where n <= 254

Server Class generic

< Component Integration Services forwards the following syntax
to a server with server class generic, unless a text, image, decimal, or
numeric datatypes is specified:

alter table [database .[owner].] table_name
add column_name datatype [{identity | null}]
{L next_column 1}...

If a text, image, decimal, or numeric datatype is used, Component
Integration Services raises Error 11205:

Datatype <typename> is unsupported for server
<servername>.

« \When a user defines a column with the alter table command, a
datatype must be provided. The server passes the datatype name
of each column to the Generic Access Module without
conversion.

See Also

alter table in the Adaptive Server Reference Manual.

Server Classes

Adaptive Server Enterprise Release 11.5.x begin transaction

begin transaction

Function
Marks the starting point of a user-defined transaction.

Syntax

begin tran[saction] [transaction_name]

Comments

< When Adaptive Server receives a begin transaction command, an
internal state is set which marks the beginning of a transaction. At
this point, Component Integration Services is not involved, and
the command is not immediately forwarded to remote locations.

< transaction_name is not used by Component Integration Services
in this release.

Server Class sql_server

= Component Integration Services checks the transaction state of
the connection to a server of class sql_server. If the internal
transaction state indicates that a transaction is in progress, and
the state of the connection to the server indicates that no
transaction is in progress, Component Integration Services
forwards the begin transaction command to the server prior to
forwarding the first command to that server. In the example
below, assume tables t1 and t2 are both located on the same
remote SQL Server:

begin transaction

insert into t1 values (...)
update t2 ...

commit transaction

At the time the begin transaction command is processed, no
interaction with the remote SQL Server occurs.

When the insert command is processed, the transaction state of
the connection to the server that owns t1 is checked. Since this is
the first command within the transaction, the connection is in a
NO TRANSACTION ACTIVE state, and the begin transaction
command is forwarded to the server. The insert command is then
forwarded to the remote location, and the transaction state for
the connection is marked as TRANSACTION ACTIVE.

Component Integration Services User's Guide 4-11

begin transaction

Adaptive Server Enterprise Release 11.5.x

When processing the update command, the transaction state of
the server that owns table t2 is checked. Since it is the same
server that owns table t1, it is in the TRANSACTION ACTIVE
state, and the begin transaction command is not forwarded.

O Note

These comments apply only to release 10.0 or later, which supports
cursors. For pre-release 10.0 SQL Server and Microsoft SQL Server,
transaction handling is similar to server class db2, described below.

Server Class direct_connect

Transaction processing for servers in class direct_connect is
identical to that of server class sql_server (release 10.0 or later).

Server Class db2

Transactions are supported only at the statement level for servers
in class db2. When the internal state of a client connection
indicates that there is an active transaction, Component
Integration Services precedes each statement forwarded to the
server with a begin transaction command. Component Integration
Services then issues a commit or rollback transaction (depending on
the success or failure of the statement) immediately after the
statement is complete.

Server Class generic

Transactions are supported only at the statement level for servers
in class generic. When the internal state of a client connection
indicates that there is an active transaction, Component
Integration Services precedes each statement forwarded to the
server with the RPC gen_begin_xact. It then issues a gen_commit_xact
or gen_rollback_xact RPC (depending on the success or failure of the
statement) immediately after the statement is complete. Each
statement executes completely or not at all.

See Also
begin transaction in the Adaptive Server Reference Manual.

4-12 Server Classes

Adaptive Server Enterprise Release 11.5.x close

close

Function
Deactivates a cursor.

Syntax

close cursor_name

Comments

= |f the cursor specified by cursor_name contains references to
proxy tables, Adaptive Server notifies Component Integration
Services to close and deallocate its remote cursors for those
tables.

< Component Integration Services uses Client-Library to manage
cursor operations to a remote server. When Component
Integration Services receives a close command, it uses the
following Client-Library functions to interact with the remote
server:

ct_cursor(command, CS_CURSOR_CLOSE, NULL,
CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

ct_cursor(command, CS_CURSOR_DEALLOC, NULL,
CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

= If the cursor contains references to more than one proxy table,
Component Integration Services must close a remote cursor for
each server represented by the proxy tables.
See Also
deallocate cursor, declare cursor, fetch, open in this chapter.

close in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-13

commit transaction

Adaptive Server Enterprise Release 11.5.x

4-14

commit transaction

Function

Marks the successful ending point of a user-defined transaction.

Syntax

commit [tran[saction] | work] [transaction_name]

Comments

When Adaptive Server receives the commit transaction command, it
notifies Component Integration Services, and Component
Integration Services attempts to commit work associated with
remote servers involved in the current transaction.

Multiple remote servers can be involved in a single transaction,
each with their own unit of work which is associated with the
Adaptive Server unit of work.

Remote work is committed before local work. If the remote
servers do not respond, or respond with errors, the transaction is
aborted, including any local work.

Work performed by transactional RPC’s must be part of an
explicit transaction.

transaction_name is not used by Component Integration Services
in this release.

Server Class sql_server

When Component Integration Services receives notification to
commit a transaction, it checks the TRANSACTION ACTIVE
state of all remote connections associated with the client
application. If there is more than one remote server involved in a
transaction, Component Integration Services first sends a prepare
transaction command to each connection with an active
transaction. If all remote servers respond with no error,
Component Integration Services sends a commit transaction
command to each server involved in the transaction. If all remote
servers again respond with no error, Component Integration
Services notifies the Adaptive Server that it can commit local
work.

This process applies to release 10.0 or later. Transaction handling
is the same as server class db2, described below, if the server
represented by server class sgl_server is:

Server Classes

Adaptive Server Enterprise Release 11.5.x commit transaction

- Pre-release 10.0 SQL Server

- Microsoft SQL Server (any version)
- Sybase IQ

OmniConnect 10.1.2

Server Class direct_connect

Transaction processing for servers in class direct_connect is
identical to that of server class sql_server (release 10.0 or later).

Server Class db2

Transactions are supported only at the statement level for servers
in class db2. When the internal state of a client connection
indicates that there is an active transaction, a begin transaction
command precedes all insert, update and delete commands.
Component Integration Services issues a commit or rollback
transaction (depending on the success or failure of the statement)
immediately after the statement is complete.

Server Class generic

See Also

Transactions are supported only at the statement level for servers
in class generic. When the internal state of a client connection
indicates that there is an active transaction, the RPC gen_begin_xact
precedes all insert, update and delete commands. Component
Integration Services issues a gen_commit_xact or gen_rollback_xact
RPC (depending on the success or failure of the statement)
immediately after the statement is complete.

commit in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-15

create existing table Adaptive Server Enterprise Release 11.5.x

create existing table

Function

Creates a new proxy table representing an existing object in a remote

server.
Syntax
create existing table [database .[owner].] table_name
(column_name datatype
[default { constant_expression | user | null}]
{[{identity | null | not null}]
| [[constraint constraint_name |

{{unique | primary key}
[clustered | nonclustered]
[with {fillfactor |max_rows_per_page}= X]
[on segment name]

| references [[database .] owner.] ref_table
[(ref_column)]
| check (search_condition M-
| [constraint constraint_name |

{{unique | primary key}
[clustered | nonclustered]
(column_name [{, column_name }...])
[with {fillfactor |[max_rows_per_page}= X]
[on segment_name]

| foreign key (column_name [{,
column_name }...])
references [[database] owner.] ref_table
[(ref_column [{, ref_column }...])]
| check (search_condition)}
[{,{ next_column | next _constraint B0
[with max_rows_per_page = x] [on segment_name |

Comments

= Adaptive Server processes the create existing table command as if
the table being created is a new local table.

= After creating the local table, Adaptive Server passes the create
existing table command to Component Integration Services, with
the external location for the existing remote object.

4-16 Server Classes

Adaptive Server Enterprise Release 11.5.x create existing table

Component Integration Services verifies that the table exists by
issuing the sp_tables RPC to the remote server that owns the
existing object.

Component Integration Services verifies the column list by
sending the sp_columns RPC to the remote server. Column names,
datatypes, lengths, identity property, and null properties are
checked for the following:

- Datatypes in the create existing table command must match or be
convertible to the datatypes of the column on the remote
location. For example, a local column datatype might be
defined as money, while the remote column datatype might be
numeric. This is a legal conversion, therefore, no errors are
reported.

- Each column’s null property is checked. If the local column’s
null property is not identical to the remote column’s null
property, a warning message is issued, but the command is not
aborted.

- Each column’s length is checked. If the length of char, varchar,
binary, varbinary, decimal and numeric columns do not match, a
warning message is issued, but the command is not aborted.

For each server class, different rules apply to column name
matching. These rules are described in the following sections.

Server Class sql_server

Component Integration Services User's Guide

Column names are not checked, but are compared by position
(column ID).

The proxy table must contain the exact number of columns as
found in the remote table, or a column count mismatch error is
issued, and the command is aborted.

Column names do not need to be identical. The remote column
name is stored in syscolumns.remote_name and is used during
guery processing when a statement is forwarded to the remote
server.

Column datatypes do not need to be identical, but they must be
convertible in both directions, or a column datatype error is
raised, and the command is aborted.

create existing table Adaptive Server Enterprise Release 11.5.x

= Table 4-3 describes the allowable datatypes that can be used
when mapping remote Adaptive Server columns to local proxy
table columns:

Table 4-3: Adaptive Server datatype conversions for create existing table

Remote Adaptive Server Allowable Adaptive Server Datatypes

Datatype

binary(n) image, binary(n), and varbinary(n); if not image,
the length must match

bit bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

char(n) text, nchar(n), nvarchar(n), char(n), varchar(n); if
not text, the length must match

datetime datetime and smalldatetime

decimal(p, s) bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

float bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

image image

int bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

money bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

nchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n); if
not text, the length must match

numeric(p, s) bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

nvarchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n); if
not text, the length must match

real bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

smalldatetime datetime and smalldatetime

smallint bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

smallmoney bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

text text

timestamp timestamp

4-18 Server Classes

Adaptive Server Enterprise Release 11.5.x create existing table

Table 4-3: Adaptive Server datatype conversions for create existing table

Remote Adaptive Server

Allowable Adaptive Server Datatypes

Datatype

tinyint bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

varbinary(n) image, binary(n), and varbinary(n); if not image,
the length must match

varchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n); if

not text, the length must match

Server Class direct_connect

The RPC sp_columns queries the datatypes of the columns in the
existing table.

Column names are not checked, but are compared by position
(column ID).

The proxy table must contain the exact number of columns as
found in the remote table, or a column count mismatch error is
issued, and the command is aborted.

Local column datatypes do not need to be identical to remote
column datatypes, but they must be convertible as shown in
Table 4-4. If not, a column type error is raised, and the command
is aborted.

Table 4-4: DirectConnect datatype conversions for create existing table

DirectConnect

Allowable Adaptive Server Datatypes

Datatype

binary(n) image, binary(n), varbinary(n); if the length does not
match, the command is aborted

binary(16) timestamp

bit bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

char(n) text, nchar(n), nvarchar(n), char(n) and varchar(n); if the
length does not match, the command is aborted

datetime datetime, smalldatetime

decimal(p, s) bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

float bit, decimal, float, int, money, numeric, real, smallint,

smallmoney, and tinyint

Component Integration Services User's Guide 4-19

create existing table Adaptive Server Enterprise Release 11.5.x

Table 4-4: DirectConnect datatype conversions for create existing table

DirectConnect Allowable Adaptive Server Datatypes

Datatype

image image

int bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

money bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

nchar(n) text, nchar(n), nvarchar(n), char(n) and varchar(n); if the
length does not match, the command is aborted

numeric(p, s) bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

nvarchar(n) text, nchar(n), nvarchar(n), char(n) and varchar(n); if the
length does not match, the command is aborted

real bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

smalldatetime datetime, smalldatetime

smallint bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

smallmoney bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

text text

timestamp timestamp, binary(8), varbinary(8)

= The column length defined for columns of type char, varchar,
binary, and varbinary must match the length of the corresponding
columns in the remote table.

= Scale and precision of columns of type numeric or decimal must
match the scale and precision of the corresponding columns in
the remote table.

= [f the null property is not identical to the remote column’s null
property, a warning message is issued, but the command is not
aborted.

= Datatype information is passed in the CS_DATAFMT structure
associated with the parameter. The following fields of the
structure contain datatype information:

- datatype — the CS_Library datatype representing the Adaptive
Server datatype. For example, CS_INT_TYPE.

4-20 Server Classes

Adaptive Server Enterprise Release 11.5.x

create existing table

- usertype — the native DBMS datatype. sp_columns passes this
datatype back to Component Integration Services during a
create existing table command as part of its result set (see
sp_columns in the Adaptive Server Reference Manual). Adaptive
Server returns this datatype in the usertype field of parameters
to assist the DirectConnect in datatype conversions.

Server Class db2

= Column names are checked in a case-insensitive manner. If there
is no match, a column name error is raised, and the command is

O Note

aborted.

The Adaptive Server table can contain fewer columns than the remote
table, but each column in the Adaptive Server table must have a matching
column in the remote table.

= text and image datatypes are not supported by server class db2.

= When a create existing table command is processed, the datatype for
each column specifies the type of conversion to perform between
the DB2 and Adaptive Server datatypes during query processing.
Table 4-5 describes the allowable Adaptive Server datatypes that
can be used for existing DB2 datatypes:

Table 4-5: DB2 datatype conversions for create existing table

DB2 Datatype

Allowable Adaptive Server Datatypes

int int

smallint int, smallint, and tinyint; if length does not
match, a warning message is issued

tinyint int, smallint, and tinyint; if length does not
match, a warning message is issued

float real, float, and money

double precision

real, float, and money

real

real, float, and money

decimal(scale > 0)

float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

decimal (scale = 0)

float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

Component Integration Services User's Guide 4-21

create existing table

Adaptive Server Enterprise Release 11.5.x

Table 4-5: DB2 datatype conversions for create existing table (continued)

DB2 Datatype

Allowable Adaptive Server Datatypes

numeric (scale > 0)

float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

numeric (scale = 0)

float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

char

char, varchar, bit, binary, varbinary, text and
image; if not text or image, length must match

char(n) for bit data

binary(n), varbinary(n), and image; if not
image, length must match

varchar

char, varchar, bit, binary, varbinary, text and
image; if not text or image, length must match

varchar(n) for bit data

binary(n), varbinary(n), and image; if not
image, length must match

long varchar (length
truncated to 255)

char, varchar, bit, binary, varbinary, text and
image; if not text or image, length must match

date char(10), varchar(10), and datetime (time set to
12:00AM)

time char(8), varchar(8), and datetime (date set to
1/1/1900)

timestamp char(26), varchar(26), datetime, and
smalldatetime

graphic Not supported

vargraphic Not supported

long vargraphic Not supported

= [Ifalocal column’s datatype cannot be converted to the remote
column’s datatype, a column type error is raised, and the
command is aborted.

= |fthe data contained in a long varchar column exceeds 255 bytes, it
is truncated, or, if the gateway is so configured, an error is
returned.

= DB2 table names are limited to 18 characters.
< DB2 authorization IDs (owner names) are limited to 8 characters.

= The maximum string length for columns returned by DB2 is 254
characters for char and varchar datatypes. For long varchar, the
length is 32,704 bytes.

4-22 Server Classes

Adaptive Server Enterprise Release 11.5.x create existing table

DB2 can return date values that are not within the range of the
Adaptive Server datetime datatype. DB2’s range is 0001-01-01 to
9999-12-31. The Adaptive Server’s range is 1753-01-01 to 9999-12-
31. When a date earlier than 1753-01-01 is retrieved from DB2, it
is converted to 1753-01-01.

Check DB2 documentation for the maximum number of columns
per DB2 table. This varies with the DB2 version.

Server Class generic

O Note

Column names are checked in a case-insensitive manner. If there
is no match, a column name error is raised, and the command is
aborted.

The Adaptive Server table can contain fewer columns than the remote
table, but each column in the Adaptive Server table must have a matching
column in the remote table.

text, image, decimal, and numeric datatypes are not supported by
the server class generic.

Table 4-6 illustrates datatype compatibility when the create existing
table command is processed. When the server encounters a
datatype shown in the “ODBC Datatype” column, it allows any
of the datatypes shown in the “Allowable Adaptive Server
Datatypes” column. When a datatype other than an allowable
datatype is encountered, Adaptive Server returns an error
message and the create existing table command is aborted.

Table 4-6: ODBC datatype conversions for create existing table

ODBC Datatype Allowable Adaptive Server Datatypes
int int

smallint smallint

tinyint tinyint

float float, money, and smallmoney

double precision float, money, and smallmoney

real

real, money, and smallmoney

Component Integration Services User's Guide 4-23

create existing table Adaptive Server Enterprise Release 11.5.x

Table 4-6: ODBC datatype conversions for create existing table (continued)

ODBC Datatype Allowable Adaptive Server Datatypes

decimal(p,s) float, money

(scale less than 0 or precision
greater than or equal to 10)

decimal(p,s) int, float, money

(scale equal to 0 or precision
greater than or equal to 10

numeric(p,s) float, money

(scale less than 0 or precision
greater than or equal to 10)

numeric(p,s) int, float, money

(scale equal to 0 or precision
greater than or equal to 10)

char(n) char(n), varchar(n) (n truncated to 255 bytes)
long varchar(n), varchar(n) char(n), varchar(n) (n truncated to 255 bytes)
date datetime (time set to 12:00AM)
time datetime (date set to 1/1/1900)
timestamp datetime
bit bit
binary(n) binary(n), varbinary(n); length must match
varbinary(n) binary(n), varbinary(n); length must match
long varbinary(n) binary(255), varbinary(255)

See Also

create existing table in the Adaptive Server Reference Manual.

4-24 Server Classes

Adaptive Server Enterprise Release 11.5.x create index

create index

Function

Creates an index on one or more columns in a table.

Syntax

create [unique] [clustered | nonclustered]

index index_name

on[[database .| owner.] table_name (column_name
[, column_name]...)

[with {{fillfactor | max_rows_per_page} = X,

ignore_dup_key, sorted_data,

[ignore_dup_row | allow_dup_row]}]

[on segment_name]

Comments

< Component Integration Services processes the create index
command when the table involved has been created as a proxy
table. The actual table resides on a remote server, and Component
Integration Services forwards the request to the remote server
after Adaptive Server catalogs are updated to represent the new
index.

= Trace flag 11208 changes the behavior of the create index command.
If trace flag 11208 is turned on, Component Integration Services
does not send the create index command to the remote server.
Instead, Adaptive Server processes the command locally, as if the
table on which it operates is local. This is useful for creating an
index on a proxy table that maps to a remote view.

= Adaptive Server performs all system catalog updates in order to
identify the index. However, just as there are no data pages in the
server for proxy tables, there are no index pages.

< When Component Integration Services forwards the create index
command to a remote server, the table name used is the remote
table name, and the column names used are the remote column
names. These names may not be the same as the local proxy table
names.

Server Class sql_server

< Component Integration Services forwards everything except the
on segment_name clause to the remote server.

Component Integration Services User's Guide 4-25

create index Adaptive Server Enterprise Release 11.5.x

= For pre-release 10.0 SQL Server or Microsoft SQL Server 6.5,
neither the max_rows_per_page or on segment_name clause is
forwarded to the remote server.

Server Class direct_connect

= When the language capability is set to “Transact-SQL”,
Component Integration Services forwards all syntax except the
max_rows_per_page and on segment_name clauses to the remote server.

= When the language capability is set to “DB2”, the behavior is the
same as for server class db2.

= The DirectConnect must either translate the Sybase extensions to
equivalent native syntax or ignore them.

Server Class db2

< Component Integration Services does not forward the following
clauses to the remote server:

max_rows_per_page
ignore_dup_key
ignore_dup_row
allow_dup_row

< Component Integration Services converts the fillfactor option to

pctfree and then forwards it to the remote server.
Server Class generic

= Component Integration Services forwards all syntax except the
max_rows_per_page and on segment_name clauses to the remote server.

= The Generic Access Module must either translate the Sybase
extensions to equivalent native syntax or ignore them.

See Also
create index in the Adaptive Server Reference Manual.

4-26 Server Classes

Adaptive Server Enterprise Release 11.5.x create table

create table

Function
Creates new tables and optional integrity constraints.

Syntax
create table [database .[owner].] table_name
(column_name datatype
[default { constant_expression | user | null}]
{[{identity | null | not null}]
| [[constraint constraint_name |
{{unique | primary key}
[clustered | nonclustered]
[with {fillfactor |[max_rows_per_page}= X]
[on segment_name]
| references [[database .| owner.] ref_table
[(ref_column)]
| check (search_condition M-
| [constraint constraint_name]
{{unique | primary key}
[clustered | nonclustered]
(column_name [{, column_name }...])
[with {fillfactor |[max_rows_per_page}= X]
[on segment _name]
| foreign key (column_name [{,
column_name }...])
references [[database .] owner.] ref_table
[(ref_column [{, ref_column 1}...])]
| check (search_condition)}
[{,{ next_column | next _constraint B
[with max_rows_per_page = x] [on segment_name |
Comments

= If the table being created is mapped to a remote location, a proxy
table is created. A proxy table is identical to a local table, except
that the sysobjects.sysstat2 column contains a status flag that
indicates the table is mapped to an external location.

= The external location must be previously defined using the
sp_addobjectdef system procedure.

Component Integration Services User's Guide 4-27

create table

Adaptive Server Enterprise Release 11.5.x

4-28

After the Adaptive Server processes the create table command, it
notifies Component Integration Services of the need to forward
the command to the remote location (if a location has been
previously specified).

Component Integration Services reconstructs the SQL necessary
to create the table, and forwards the SQL to the remote server. It
does not forward all the original syntax to the remote server. The
following clauses are processed by Adaptive Server:

on segment name

- check constraints
default
with max_rows_per_page

Trace flag 11213 changes the behavior of the create table command.
Referential constraints and unique or primary key constraints are
forwarded to the remote server unless trace flag 11213 is turned
on, in which case they are processed locally.

For each column, the column name, datatype, length, identity
property, and null property are reconstructed from the original
statement.

Component Integration Services passes a NULL char column asa
NULL varchar column.

Component Integration Services passes a NULL binary column as
a NULL varbinary column.

Server Class sql_server

When a user defines a column with the create table command,
Component Integration Services passes the datatype of each
column to the remote server without conversions.

Server Class direct_connect

When a user defines a column with the create table command, a
datatype for the column must be provided. Component
Integration Services reconstructs the create table command and
passes commands to the targeted DirectConnect. The gateway
transforms the commands into a form that the underlying DBMS
recognizes.

Some DirectConnects support DB2 syntax mode, which is
described in the DirectConnect documentation. When the
DirectConnect enables DB2 syntax mode, Component

Server Classes

Adaptive Server Enterprise Release 11.5.x

create table

Integration Services constructs DB2 SQL syntax and converts the
column to a datatype DB2 supports.

= Adaptive Server datatypes are converted to either the
DirectConnect or DB2 syntax mode datatypes shown in Table 4-7,
depending on whether the DirectConnect supports DB2 syntax

mode.

Table 4-7: DirectConnect datatype conversions for create table

Adaptive Server

DirectConnect

DirectConnect DB2 Syntax

Datatype Default Datatype Mode Datatype

binary(n) binary(n) char(n) for bit data

bit bit char(1)

char char char

datetime datetime timestamp

decimal(p, s) decimal(p, s) decimal(p, s)

float float float

image image varchar(n) for bit data; the
value of n is determined
by the global variable
@@textsize

int int int

money money float

numeric(p, s) numeric(p, s) decimal(p, s)

nchar(n) nchar(n) graphic(n)

nvarchar(n) nvarchar(n) vargraphic(n)

real

real

real

smalldatetime smalldatetime timestamp

smallint smallint smallint

smallmoney smallmoney float

timestamp timestamp varbinary(8)

tinyint tinyint smallint

text text varchar(n); the value of n is

determined by the global
variable @@textsize

varbinary(n)

varbinary(n)

varchar(n) for bit data

Component Integration Services User's Guide 4-29

create table Adaptive Server Enterprise Release 11.5.x

Table 4-7: DirectConnect datatype conversions for create table (continued)

Adaptive Server DirectConnect DirectConnect DB2 Syntax
Datatype Default Datatype Mode Datatype
varchar(n) varchar(n) varchar(n)

Server Class db2

Table 4-8 shows the datatype conversions that are performed when a
create table command is processed. Adaptive Server datatypes are
converted to the DB2 datatypes shown.

Table 4-8: DB2 datatype conversions for create table

Adaptive Server Datatype DB2 Datatype

binary(n) char(n) for bit data, where n <= 254
bit char(1)

char(n) char(n), where n <= 254

datetime timestamp

decimal(p, s) decimal(p, s)

float float

image Not supported

int int

money float

nchar char(n)

nvarchar varchar(n)

numeric(p, s) decimal(p, s)

real real

smalldatetime timestamp

smallint smallint

smallmoney float

tinyint smallint

text Not supported

varbinary(n) varchar(n) for bit data, where n <=254
varchar(n) varchar(n), where n <= 254

4-30 Server Classes

Adaptive Server Enterprise Release 11.5.x create table

Server Class generic

= When you define a column with the create table command, a
datatype must be provided. The server passes the datatype name
of each column to the Generic Access Module without
conversion.

= The generic server class does not allow text, image, decimal or
numeric datatypes. Use of these datatypes results in an error.

See Also

create table in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-31

deallocate cursor

Adaptive Server Enterprise Release 11.5.x

4-32

deallocate cursor

Function

Makes a cursor inaccessible and releases all memory resources
committed to that cursor.

Syntax

deallocate cursor cursor_name

Comments

If the cursor specified by cursor_name contains references to
proxy tables, Adaptive Server notifies Component Integration
Services to deallocate its remote cursors for those tables.

If the remote cursor is not closed, Component Integration
Services closes and deallocates it. If the remote cursor is already
closed, no additional actions are taken.

Component Integration Services uses Client-Library to manage
cursor operations to a remote server. When Component
Integration Services receives a deallocate cursor command and the
cursor has not been explicitly closed with a close command,
Component Integration Services uses the following Client-
Library functions to interact with the remote server:

ct_cursor(command CS_CURSOR_CLOSE, NULL,

CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

ct_cursor(command CS_CURSOR_DEALLOC, NULL,

CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

If the cursor contains references to more than one proxy table,
Component Integration Services must deallocate a remote cursor
for each server represented by the proxy tables.

See Also

close, declare cursor, fetch, open in this chapter.

deallocate cursor in the Adaptive Server Reference Manual.

Server Classes

Adaptive Server Enterprise Release 11.5.x declare cursor

declare cursor

Function
Defines a cursor.

Syntax

declare cursor_name cursor
for select statement
[for {read only | update [of column_name_list T}

Comments

« |f the cursor specified by cursor_name contains references to
proxy tables, Adaptive Server notifies Component Integration
Services to establish a connection to the remote servers
referenced by the proxy tables.

A separate connection is required for each server represented by
all proxy tables. For example, if all proxy tables in the cursor
reference the same remote server, only one connection is
required while the declare cursor command is processed.
However, if two or more servers are referenced by the proxy
tables, a separate connection to each server is required.

See Also
close, deallocate cursor, fetch, open in this chapter.
declare cursor in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-33

delete Adaptive Server Enterprise Release 11.5.x

delete

Function

Removes rows from a table.

Syntax

delete [from]
[[database .] owner.){ view_name | table_name }
[where search_conditions]

delete [[database .| owner.){ table_name | view_name}
[from[[database .] owner.]{ view_name | table_name
[(index index_name [prefetch size][lrujmru])]}
[[database .] owner.]{ view_name | table_name
(index index_name [prefetch size [lrujmru])]}
l..-]

[where search conditions]

delete [from]
[[database .] owner.){ table_name | view_name }
where current of cursor_name

Comments

= Component Integration Services processes the delete command
when the table on which it operates has been created as a proxy
table. Component Integration Services forwards the entire
request (or part of it) to the server that owns the actual object.

< Component Integration Services executes the delete command
using one of two methods:

1. The entire command is forwarded to the remote server as a
single statement in close to its original syntax. If the syntax and
remote capabilities match, the entire statement is forwarded
and processed remotely. This is referred to as quickpass mode.

2. If the entire command cannot be forwarded to a remote server,
Component Integration Services declares and opens one or
more cursors in update mode, and begins a scan on the remote
table. Each cursor forwards as much of the original statement’s
predicates to the remote server as possible. For each row
fetched that meets the search criteria, a positioned delete is
executed.

= When Component Integration Services forwards the delete
command to a remote server, the table name used is the remote
table name, and the column names used are the remote column

4-34 Server Classes

Adaptive Server Enterprise Release 11.5.x delete

names. These names may not be the same as the local proxy table
names.

Component Integration Services generally passes the original
delete syntax to remote servers as a single statement, but the
following conditions will likely cause the statement to be
executed using method 2, above:

- The statement contains multiple tables that are not located in
the same remote server

- The statement contains local tables (including temporary
tables)

- The statement contains case expressions

- The statement contains text or image columns

- The statement contains certain referential integrity checks

- The statement contains system functions in the predicate list

- The statement contains syntax that the remote server does not
support

The format involving where current of is never forwarded to a
remote server and causes the statement to be executed using
method 2 above.

If Component Integration Services cannot pass the entire
statement to a remote server, a unique index must exist on the
table.

Server Class sql_server

If Component Integration Services cannot forward the original
query without alteration, it performs the delete using method 2.

Server Class direct_connect

The syntax forwarded to servers of class direct_connect is
dependent on the capabilities negotiation which occurs when
Component Integration Services first connects to the remote
DirectConnect. Examples of negotiable capabilities include:
subquery support, group by support, and built-in support.

A DirectConnect can request that the delete command be
generated in DB2 syntax.

Component Integration Services passes data values as
parameters to either a cursor or a dynamic SQL statement.
Language statements can also be used if the DirectConnect

Component Integration Services User's Guide 4-35

delete Adaptive Server Enterprise Release 11.5.x

supports it. The parameters are in the datatype native to
Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

Server Class db2

= Server’s of class db2 do not contain the capabilities negotiation
features of server class direct_connect, so the syntax passed to the
remote server is simpler than that allowed by Transact-SQL. The
syntax does not contain the following:

- Search conditions containing subqueries, group by, or order by
clauses

- Transact-SQL built-in functions
- Transact-SQL operators (such as bitwise operators)
- Syntax not allowed by DB2

Component Integration Services processes the delete command
using method 2, described above, when the statement is
complex.

= Ifthe server is a DB2 system, use traceflag 11215 to instruct
Component Integration Services that the remote server is capable
of handling all DB2 syntax. This assumption is not made
automatically because not all gateways using the db2 server class
are actually connected to DB2 systems. When trace flag 11215 is
turned on, quickpass mode is used unless the following
conditions exist:

- The statement cannot be expressed in DB2 syntax
- The statement contains outer joins
- The statement contains like clauses with Sybase extensions
- The statement contains built-in functions that are not
supported by DB2
Server Class generic

= Server’sof class generic do not contain the capabilities negotiation
features of server class direct_connect, so the syntax passed to the
remote server is simpler than that allowed by Transact-SQL. The
syntax does not contain the following:

- Search conditions containing subqueries, group by, or order by
clauses

- Transact-SQL built-in functions

4-36 Server Classes

Adaptive Server Enterprise Release 11.5.x delete

- Transact-SQL operators (such as bitwise operators)
- Syntax not allowed by the generic server class

< Complex statements cause Component Integration Services to
perform a select statement followed by the delete statement when
qualifying rows are found.

See Also

delete in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-37

drop database

Adaptive Server Enterprise Release 11.5.x

4-38

drop database

Function
Removes one or more databases from Adaptive Server.

Syntax
drop database database_name [, database_name]...

Comments
= For each database being dropped, Component Integration
Services scans sysobjects to check for proxy tables in the database.
Each proxy table that was not created with the existing keyword is
dropped in the remote server that owns the object.
Server Class sql_server
= Component Integration Services issues a drop table command for
each table that was not created with the existing keyword.
Server Class direct_connect
< Component Integration Services issues a drop table command for
each table that was not created with the existing keyword.
Server Class db2
= Component Integration Services issues a drop table command for
each table that was not created with the existing keyword.
Server Class generic

= Component Integration Services issues the following RPC for
each proxy table that was not created with the existing keyword:

gen_drop_table table_name , owner_name,
database_name

See Also
drop database in the Adaptive Server Reference Manual.

Server Classes

Adaptive Server Enterprise Release 11.5.x drop index

drop index

Function

Removes an index from a table in the current database.

Syntax

drop index table_name.index_name
[[table_name.index_name]...

Comments

= Component Integration Services processes the drop index
command when the table involved has been created as a proxy
table. The actual table and index reside on a remote server.
Component Integration Services forwards the request to the
remote server, and removes the index from the proxy table.

= When Component Integration Services forwards the drop index
command to a remote server, the table name used is the remote
table name, and the index names used are the remote index
names. These names may not be the same as the local proxy table
names.

< [f multiple indexes are dropped in a single command, each index
is sent as an individual drop index command.

= Trace flag 11208 changes the behavior of the drop index command.
If trace flag 11208 is turned on, the drop index command is not sent
to the remote server. Instead, Adaptive Server processes the
command locally, as if the table on which it operates is local. This
is useful for synchronizing the local Adaptive Server schema
with the schema of the remote database.

Server Class sql_server

< Component Integration Services forwards the following drop index
syntax to a remote server configured as class sql_server:

drop index table_name.index_name
Component Integration Services precedes this statement with a
use database command since the drop index syntax does not allow
you to specify the database name.
Server Class direct_connect

= Component Integration Services forwards the following drop index
syntax to a remote server configured as class direct_connect:

Component Integration Services User's Guide 4-39

drop index Adaptive Server Enterprise Release 11.5.x

drop index table_name.index_name

Server Class db2

= Component Integration Services forwards the following drop index
syntax to a remote server configured as class db2:

drop index index_name

Server Class generic

< Component Integration Services forwards the following RPC to a
remote server configured as class generic:

gen_drop_index index_name , table_name , owner_name,
database _name

See Also
drop index in the Adaptive Server Reference Manual.

4-40 Server Classes

Adaptive Server Enterprise Release 11.5.x drop table

drop table

Function

Removes a table definition and all of its data, indexes, triggers, and
permissions from the database.

Syntax

drop table [[database .| owner.] table_name
[L[[database .] owner.] table_name]...

Comments

= Component Integration Services processes the drop table command
when the table on which it operates has been created as a proxy
table. Component Integration Services forwards the entire
request (or part of it) to the server that owns the actual object if
the table was not created with the existing keyword.

< When Component Integration Services forwards the drop table
command to a remote server, the table name used is the remote
table name. This name may not be the same as the local proxy
table name.

= [f multiple tables are dropped in a single command, each table is
sent as an individual drop table command.

« Atable in use by another user or process cannot be dropped and
an error stating that the table is in use is returned.
Server Class sql_server

= Component Integration Services forwards the following drop table
syntax to a remote server configured as class sql_server:

drop table database . owner . table_name

Server Class direct_connect

< Component Integration Services requests a capabilities response
from a remote server with server class direct_connect, but support
for drop table is not optional. The behavior of the DirectConnect is
database dependent.

Server Class db2

< Component Integration Services forwards the following drop table
syntax to a remote server configured as class db2:

Component Integration Services User's Guide 4-41

drop table Adaptive Server Enterprise Release 11.5.x

drop table owner . table_name

Server Class generic

= Component Integration Services forwards the following RPC to a
remote server configured as class generic:

gen_drop_table table_name , owner, database

See Also
drop table in the Adaptive Server Reference Manual.

4-42 Server Classes

Adaptive Server Enterprise Release 11.5.x execute

execute

Function

Runs a system procedure or a user-defined stored procedure.

Syntax

[execute] [@ return_status =]
[[[server .] database .] owner.] procedure_name [; number]
[[@ parameter_name =] value |

[@ parameter_name =] @ variable [output]
[L[@ parameter_name =] value |
[@ parameter_name =] @ variable [output]...]]

[with recompile]

Comments

e \When the execute command is used to issue an RPC to a remote
server, Adaptive Server issues the RPC via one of two methods.
The method used to issue the RPC determines whether the work
performed by the RPC can be part of an on-going transaction. The
two methods are as follows:

1. The RPC is issued via the Adaptive Server’s site handler. This
is the Adaptive Server’s default method of issuing RPCs. In
this case, the RPC cannot be part of an on-going transaction.

2. The RPC is issued via Component Integration Services. In this
case, the RPC can be part of an on-going transaction. To issue
RPCs using this method, cis rpc handling must be turned on. This
is done via the set command or the sp_configure system
procedure.
See Also
“RPC Handling and Component Integration Services” on page 3-15.
set in this chapter.

execute in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-43

fetch

Adaptive Server Enterprise Release 11.5.x

4-44

fetch

Function

Returns a row or a set of rows from a cursor result set.

Syntax

fetch cursor_name [into fetch_target_list]

Comments

When the first fetch is received, Component Integration Services
constructs the query defined by the declare cursor command and
sends it to the remote server.

If the remote server supports Client-Library cursors, Component
Integration Services takes the following steps:

1. Declares a cursor:

ct_cursor(command, CS_CURSOR_DECLARE...)

2. Establishes the cursor row count:

ct_cursor(command, CS_CURSOR_ROWS,...

cursor_row_count)

3. Opens a Client-Library client cursor to the remote server:

ct_cursor(command, CS_CURSOR_OPEN...)

If the remote server does not support Client-Library cursors,
Component Integration Services sends a language request to the
server. This may require an additional connection to that server.

If the declare cursor command included a for update clause, the
cursor row count is set to 1; otherwise, it is set to the value of the
configuration parameter cis_cursor_rows.

After the cursor is opened or the language request is sent,
Component Integration Services issues a Client-Library ct_fetch
command to obtain the first row. Client-Library array binding is
used to establish the buffer in which to place the fetched results,
whether Client-Library cursors or language requests are used to
generate the fetchable results. The number of rows that are
buffered by a single fetch is determined by the cursor row count
discussed above.

Subsequent fetch requests retrieve rows from the buffered
results, until the end of the buffer is reached. At that time,

Server Classes

Adaptive Server Enterprise Release 11.5.x fetch

Component Integration Services issues another Client-Library
ct_fetch command to the remote server.

= Afetch against a cursor that has no remaining rows in its result set
causes Component Integration Services to close the remote
cursor.

Server Class sql_server

< For pre-version 10.0 SQL Server, Component Integration Services
sends a language request to the remote server when the first fetch
is received after the cursor is opened.

= Forversion 10.0 or later Servers, Component Integration Services
declares a cursor to the remote server by means of Client-Library.
Server Class direct_connect

= Component Integration Services treats servers in class
direct_connect as if they were version 10.0 or later of class
sgl_server.

Server Class db2

= Component Integration Services sends a language request to the
remote server when the first fetch is requested after the cursor is
opened.

Server Class generic

= Cursors are not supported by server class generic. Component
Integration Services sends a language request to the remote
server when the first fetch is requested.

= The configuration parameter cis cursor rows determines how many
rows are returned from a single fetch sent to the remote server. If
this number is greater than 1, the rows are buffered by Client-
Library. Subsequent fetch requests retrieves rows from the buffer
until it is empty, at which time Component Integration Services
issues another fetch to the remote server.

See Also
close, deallocate cursor, declare cursor, open in this chapter.

fetch in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-45

insert Adaptive Server Enterprise Release 11.5.x

insert

Function
Adds new rows to a table or view.

Syntax
insert [into]
[database .[owner.]l{ table_name | view_name }
[(column_list)]
{values (expression [, expression 1]...)
| select_statement }

Comments

= Component Integration Services processes the insert command
when the table on which it operates has been created as a proxy
table. Component Integration Services forwards the entire
request (or part of it) to the server that owns the actual object.

= When Component Integration Services forwards the insert
command to a remote server, the table name used is the remote
table name, and the column names used are the remote column
names. These names may not be the same as the local proxy table
names.

Server Class sql_server
= insert commands using the values keyword are fully supported.

= insert commands using a select command are supported for all
datatypes except text and image. text and image columns are only
supported when they contain null values.

« [fallinsert and select tables reside on the same remote server, the
entire statement is forwarded to the remote server for execution.
This is referred to as quickpass mode. Quickpass mode is not
used if the select statement does not conform to all the quickpass
rules for a select command (see “select” on page 4-56).

« |f the select tables reside on one remote server, and the insert table
resides on a different server, Component Integration Services
selects each row from the source tables, and inserts the row into
the target table.

Server Class direct_connect

= insert commands using the values keyword are fully supported.

4-46 Server Classes

Adaptive Server Enterprise Release 11.5.x insert

insert commands using a select command are fully supported, but
the table must have a unique index if the table has text or image
columns. When using insert with a select command, the entire
command is sent to the remote server if:

- All tables referenced in the command reside on the remote
server

- The capabilities response from the DirectConnect indicates
that insert-select commands are supported

If both conditions are not met, Component Integration Services
selects each row from the source tables, and inserts the row into
the target table.

Component Integration Services passes data values as
parameters to either a cursor or a dynamic SQL statement.
Language statements can also be used if the DirectConnect
supports it. The parameters are in the datatype native to
Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

Server Class db2

insert commands using the values keyword are fully supported for
all valid DB2 datatypes.

insert commands using a select command are fully supported for
all valid DB2 datatypes.

When using insert with a select command, the entire statement is
sent to the remote server if:

- All tables referenced in the statement reside on the remote
server

- Trace flag 11215 is enabled

If both conditions are not met, Component Integration Services
selects each row from the source tables, and inserts the rows into
the target table.

Server Class generic

insert commands using the values keyword are supported for all
valid datatypes in server class generic.

insert commands using a select command are supported for all
valid datatypes in server class generic. When using insert with a
select command, Component Integration Services selects each

Component Integration Services User's Guide 4-47

insert Adaptive Server Enterprise Release 11.5.x

row from the source tables, and then inserts the row into the
target table.

See Also
insert in the Adaptive Server Reference Manual.

4-48 Server Classes

Adaptive Server Enterprise Release 11.5.x open

open

Function
Opens a cursor for processing.

Syntax

open cursor_name

Comments

= Component Integration Services takes no additional action for
the open command.

= Adaptive Server processes the open command locally—it sets
cursor state information not used by Component Integration
Services until the first fetch command is received.

« Refer also to the declare, fetch, close and deallocate commands.

See Also
close, deallocate cursor, declare cursor, fetch in this chapter.

open in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-49

prepare transaction Adaptive Server Enterprise Release 11.5.x

prepare transaction

Function

Used by two-phase commit applications to see if a server is prepared
to commit a transaction.

Syntax
prepare tran[saction]

Comments

= Adaptive Server notifies Component Integration Services when it
receives a prepare transaction command so that remote servers
involved in the current transaction can enter the prepared state.

= Foreach server that is involved in the current transaction,
Component Integration Services sends a prepare transaction
command and monitors the response. If there are no errors
reported, each remote server is assumed to be in a prepared state
and Component Integration Services returns control to the
Adaptive Server. Adaptive Server then enters a prepared state for
local work performed by the transaction.

= This behavior applies only to servers in class sql_server and
direct_connect; prepare transaction is ignored by servers in other
server classes that are involved in the current transaction.

Server Class sql_server

< Component Integration Services sends a prepare transaction
command to each server in class sql_server that is version 10.0 or
later.

= The prepare transaction command is not sent to the following types
of servers:

- Sybase 1Q 11.x

- Microsoft SQL Server

- Pre-version 10.0 SQL Server
- OmniSQL Server 10.1.2

Server Class direct_connect

= Handling of the prepare transaction command for servers in class
direct_connect is identical to that of server class sql_server (version
10.0 or later).

4-50 Server Classes

Adaptive Server Enterprise Release 11.5.x prepare transaction

Server Class db2
= Component Integration Services does not send the prepare
transaction command to servers in class db2.
Server Class generic
< Component Integration Services does not send the prepare
transaction command to servers in class generic
See Also

prepare transaction in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-51

readtext Adaptive Server Enterprise Release 11.5.x

readtext

Function

Reads text and image values, starting from a specified offset and
reading a specified number of bytes or characters.

Syntax

readtext [[database .] owner.] table_name . column_name
text_pointer offset size [holdlock]
[using {bytes | chars | characters}]
[at isolation {read uncommitted | read committed |
serializable}]

Comments

= Component Integration Services processes the readtext command
when the table on which it operates has been created as a proxy
table. Component Integration Services forwards the entire
request (or part of it) to the server that owns the actual object.

= When Component Integration Services forwards the readtext
command to a remote server, the table name used is the remote
table name, and the column names used are the remote column
names. These names may not be the same as the local proxy table
names.

= The using bytes and at isolation clauses are ignored.

Server Class sql_server

< Component Integration Services forwards the following syntax
to the remote server when the underlying table is a proxy table:

readtext [[database .| owner.] table_name . column_name
text_pointer offset size
[using {chars | characters}]

Server Class direct_connect

= |f the DirectConnect does not support text pointers, readtext
cannot be sent and its use results in errors.

= |f the DirectConnect does support text pointers, Component
Integration Services forwards the following syntax to the remote
server:

4-52 Server Classes

Adaptive Server Enterprise Release 11.5.x readtext

readtext
[[database .| owner.] table_name . column_name
text_pointer offset size
[using {chars | characters}]

= readtext is issued anytime text or image data must be read. readtext is
called when a select command refers to a text or image column in
the select list, or when a where clause refers to a text or image
column.

For example, you have a proxy table books that is mapped to the
books table on the remote server foo. The columns are id, name,
and the text column blurb. When the following statement is
issued:

select * from books

Component Integration Services sends the following syntax to
the remote server:

select id, name, textptr(blurb) from foo_books
readtext foo_books.blurb @p1 0 0 using chars

Server Class db2
= readtext is not supported since text and image datatypes are not
supported for servers in class db2.
Server Class generic
= readtext is not supported since text and image datatypes are not
supported for servers in class generic.
See Also
readtext in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-53

rollback transaction

Adaptive Server Enterprise Release 11.5.x

4-54

rollback transaction

Function

Rolls a user-defined transaction back to the last savepoint inside the
transaction or to the beginning of the transaction.

Syntax
rollback {transaction | tran | work}
[transaction_name | savepoint_name]
Comments

= Adaptive Server notifies Component Integration Services when it
receives a rollback transaction command and Component
Integration Services attempts to rollback work associated with
remote servers in the current transaction.

= Multiple remote servers can be involved in a single transaction,
each with their own unit of work which is associated with the
Adaptive Server unit of work.

« Remote work is rolled back before local work.

= Work performed by transactional RPC’s is included in the local
transaction and can be rolled back if the remote server supports
RPC’s within transactions.

= transaction_name and savepoint_name is not used by Component
Integration Services in this release.

Server Class sql_server

< When Component Integration Services receives notification that
a transaction is to be rolled back, it checks the TRANSACTION
ACTIVE state of all remote connections associated with the client
application. For each connection with an active transaction,
Component Integration Services sends a rollback transaction. If all
remote servers respond with no error, Component Integration
Services notifies the Adaptive Server that it can begin to roll back
local work.

This process applies to version 10.0 or later, but not to the
following servers represented by server class sql_server is:

- Pre-version 10.0 SQL Server
- Microsoft SQL Server (any version)
- Sybase I1Q

Server Classes

Adaptive Server Enterprise Release 11.5.x rollback transaction

- OmniConnect 10.1.2

For these types of servers, transaction handling is similar to
server class db2, described below.

Server Class direct_connect

= Transaction processing for servers in class direct_connect is
identical to that of server class sql_server (version 10.0 or later).

Server Class db2

= Transactions are supported only at the statement level for servers
in class db2. When the internal state of a client connection
indicates that there is an active transaction, Component
Integration Services precedes each insert, update and delete
command with a begin transaction command. It then issues a commit
or rollback transaction (depending on the success or failure of the
statement) immediately after the statement is complete.

Server Class generic

= Transactions are supported only at the statement level for servers
in class db2. When the internal state of a client connection
indicates that there is an active transaction, Component
Integration Services precedes each insert, update and delete
command with a gen_begin_xact RPC. It then issues a
gen_commit_xact or gen_rollback_xact RPC (depending on the success
or failure of the statement) immediately after the statement is
complete.

See Also
rollback in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-55

select Adaptive Server Enterprise Release 11.5.x

select

Function
Retrieves rows from database objects.

Syntax

select [all | distinct] select _list
[into [[database] owner.] table_name]
[from[[database .] owner.{ view_name | table_name

[(index index_name [prefetch size][lrulmru])]}
[holdlock | noholdlock] [shared]

LI database .| owner.){ view_name | table_name

[(index index_name [prefetch size [lrujmru])]}

[holdlock | noholdlock] [shared]]...]
[where search_conditions]
[group by [all] aggregate_free_expression

[, aggregate_free_expression 1. 1
[having search_conditions]

[order by
{ll database .] owner.){ table_name .| view_name .}]
column_name | select_list_number | expression '}
[asc | desc]
LA database .] owner.[{ table_name | view_name .}]
column_name | select_list_number | expression }

[asc | desc]]...]

[compute row_aggregate (column_name)

[, row_aggregate (column_name)]...
[by column_name [, column_name]...]]
[for {read only | update [of column_name_list 1}]

[at isolation {read uncommitted | read committed |
serializable}]

[for browse]

Comments

= Component Integration Services processes the select command
when any table on which it operates has been created as a proxy
table. When possible, Component Integration Services forwards

4-56 Server Classes

Adaptive Server Enterprise Release 11.5.x select

the entire syntax of a select command to a single remote server.
This is referred to as quickpass mode.

= When Component Integration Services forwards the select
command to a remote server, the table name used is the remote
table name, and the column names used are the remote column
names. These names may not be the same as the local proxy table
names.

= The following keywords are ignored, but they do not prevent
Component Integration Services from using quickpass mode:

shared
- prefetch
at isolation
index
Iru | mru

= The following keywords are never forwarded to a remote server
and they do prevent Component Integration Services from using
guickpass mode:

compute by
for browse
into

= Quickpass mode is not used if any of the following conditions
exist:

- All tables referenced in the from clause do not reside on the
same remote server

- Any tables are local (including temporary tables)

- The query contains syntax that the remote server does not
support

- The query contains text or image columns

- The query contains system functions in the select list or in
search conditions

= select commands in a union operation can all be forwarded to a
remote server, including the union operator, if all tables in the
select commands reside on the same remote server.

= If the select command returns a sorted result set involving a
character column from a remote server (for example, in a union
operation, a group by clause, or an order by clause), the rows may be
returned in an unexpected sort order if the remote server is

Component Integration Services User's Guide 4-57

select

Adaptive Server Enterprise Release 11.5.x

4-58

configured with a different sort order than Adaptive Server. You
can rerun the query with traceflag 11216 turned on to receive the
expected sort order. This traceflag is global and should be turned
off as soon as the query is executed.

Server Class sql_server

All syntax is supported. Since the remote server is assumed to
have all capabilities necessary to process Transact-SQL syntax, all
elements of a select command, except those mentioned above, are
forwarded to a remote server, using quickpass mode.

A bulk copy transfer is used to copy data into the new table when
a select...into command is issued and the into table resides on a
remote Adaptive Server. Both the local and remote databases
must be configured with dboption set to select into / bulkcopy.

Server Class direct_connect

The first time Component Integration Services requires a
connection to a server in class direct_connect, a request for
capabilities is made of the DirectConnect. Based on the response,
Component Integration Services determines the parts of a select
command to forward to the DirectConnect. In most cases, this is
determined by the capabilities of the DBMS with which the
DirectConnect is interfacing.

If the entire statement cannot be forwarded to the DirectConnect
using quickpass mode, Component Integration Services
compensates for the functionality that cannot be forwarded. For
example, if the remote server cannot handle the order by clause,
guickpass is not used and Component Integration Services
performs a sort on the result set.

Component Integration Services passes data values as
parameters to either a cursor or a dynamic SQL statement.
Language statements can also be used if the DirectConnect
supports it. The parameters are in the datatype native to
Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

The select...into command is supported, but the table must have a
unique index if the table has text or image columns.

If the select...into format is used and the into table is accessed
through a DirectConnect, bulk inserts are not used. Instead,
Component Integration Services uses Client-Library to prepare a

Server Classes

Adaptive Server Enterprise Release 11.5.x select

parameterized dynamic insert command, and executes it for each
row returned by the select portion of the command.

Server Class db2

< By default, Component Integration Services does not forward
syntax involving order by, group by, union, distinct, all, and expressions
that involve more than column names.

< When you turn traceflag 11215 on, the full capabilities of a DB2
database are assumed, and Component Integration Services
forwards as much syntax to the remote server (gateway) as DB2
can process, including order by, group by, union, and so forth.

Server Class generic

< Component Integration Services only forwards the syntax to
servers in class generic as is documented in the Generic Access
Module Reference Manual. Quickpass mode is not used when
servers in class generic are involved in a query.

See Also
select in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-59

set

Adaptive Server Enterprise Release 11.5.x

4-60

set

Function

Sets Adaptive Server query processing options for the duration of the
user’s work session. The subset of options listed below affects
behavior unique to Component Integration Services. For a complete
list of options, see the Adaptive Server Reference Manual.

Syntax

set cis_rpc_handling {on | off}

set transactional_rpc {on | off}

set textsize value

Comments

Normally, all outbound RPCs are routed through Adaptive
Server’s site handler. These RPCs cannot participate in any
transactions, and the performance characteristics of routing
many RPCs through the site handler may necessitate the use of an
alternate method for RPC handling.

Component Integration Services provides an alternate means of
handling outbound RPCs. If cis_rpc_handling is on, outbound RPCs
are routed through a Client-Library connection that is persistent
through the life of the client’s connection to the Adaptive Server.
This means that any number of RPCs can be routed through the
same connection, without a connect and disconnect between each
RPC. This connection is the same connection used by Component
Integration Services to handle all interaction with the remote
server, including processing of select, insert, delete and update
commands.

The client application issues set cis_rpc_handling on or off to control
whether an outbound RPC is to be routed through the Adaptive
Server’s site handler or through a Component Integration
Services connection. If cis_rpc_handling is on, Component
Integration Services processes the RPC request; if cis_rpc_handling
is off, the site handler processes the RPC.

When a client application makes a new connection to Adaptive
Server, the connection inherits the setting for the configuration
parameter cis rpc handling (default is off). This determines the
default handling for outbound RPCs.

Server Classes

Adaptive Server Enterprise Release 11.5.x set

Setting transactional_rpc on results in the same behavior as setting
cis_rpc_handling on, except that RPCs that are issued outside of a
transaction will continue to be routed through the site handler.

If both transactional_rpc and cis_rpc_handling are on, then
cis_rpc_handling has precedence.

Server Class direct_connect

See Also

Component Integration Services uses the textsize option to specify
in bytes the memory to allocate for the retrieval of text and image
data. Memory is allocated only for remote servers that cannot
perform text and image handling with text pointers. For
additional information on text and image handling, refer to “text
and image Datatypes” on page 2-16.

When a server with server class direct_connect requests DB2
syntax (for example, Net Gateway configured as server class
direct_connect), Component Integration Services uses the textsize
option to set the size of the long char column when a text column
is mapped to a long char column.

set in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-61

setuser

Adaptive Server Enterprise Release 11.5.x

4-62

setuser

Function

Allows a Database Owner to impersonate another user.

Syntax

setuser [" user_name "]

Comments

= The Database Owner uses the setuser command to adopt the
identity of another user in order to use another user’s database
objects. When using Component Integration Services, these
objects can be either local or remote.

< Component Integration Services processes the setuser
command—it does not forward the command to the remote
server. Component Integration Services drops all current
connections that have been made on behalf of the current user.

« The setuser command cannot be executed when a transaction is
current.

« Permissions that are set on a remote server override permissions
set by Component Integration Services. Component Integration
Services cannot change permissions of a user on a remote server.

e Prior to using the setuser command, the user to be impersonated
must have an external login mapped to the remote server. This is
set by the sp_addexternlogin system procedure (for more
information on sp_addexternlogin, see the Adaptive Server Reference
Manual).

See Also

setuser in the Adaptive Server Reference Manual.

Server Classes

Adaptive Server Enterprise Release 11.5.x truncate table

truncate table

Function

Removes all rows from a table.

Syntax
truncate table [[database .| owner.] table_name

Comments

= Component Integration Services processes the truncate table
command when the table on which it operates has been created as
a proxy table.

= When Component Integration Services forwards the truncate table
command to a remote server, the table name used is the remote
table name. This name may not be the same as the local proxy
table name.
Server Class sql_server
= Component Integration Services forwards the truncate table
command to servers of class sql_server.
Server Class direct_connect and sds

= |f the remote server has requested DB2 syntax, the following
statement is forwarded:

delete from [owner.] table_name
Otherwise, Transact-SQL syntax is sent:

truncate table [[database .| owner.] table_name

Server Class db2
= The following syntax is forwarded to the remote server:

delete from [owner.] table_name

Server Class generic

< Component Integration Services processes the truncate table
command using an RPC call to the procedure gen_truncate_table.

See Also
truncate table in the Adaptive Server Reference Manual.

Component Integration Services User's Guide 4-63

update Adaptive Server Enterprise Release 11.5.x

update

Function

Changes data in existing rows, either by adding data or by modifying
existing data.

Syntax

update [[database .] owner.){ table_name | view_name}
set[[[database .] owner.{ table_name .| view_name .}]
column_namel =

{ expressionl |NULL|(select statement)}
[, column_name2 =
{ expression2 |NULL|(select_statement ...
[from[[database .] owner.]{ view_name | table_name
[(index index_name [prefetch size [lrujmru])]}
LI database .] owner.){ view_name | table_name
[(index index_name [prefetch size [lrujmru])]}]

]

[where search_conditions]

update [[database .| owner.){ table_name | view_name}
set[[[database .] owner.{ table_name .| view_name .}]
column_namel =

{ expressionl |NULL|(select_statement)}
[, column_name2 =
{ expression2 |NULL|(select_statement M-
where current of cursor_name

Comments

= Component Integration Services processes the update command
when the table on which it operates has been created as a proxy
table. Component Integration Services forwards the entire
request (or part of it) to the server that owns the actual object.

= The update command specifies the row or rows you want to
change, and the new data. The new data can be a constant, an
expression, or data pulled from other tables.

= Component Integration Services executes the update command
using one of two methods:

1. The entire command is forwarded to the remote server as a
single statement in close to its original syntax. If the syntax and
remote capabilities match, the entire statement is forwarded
and processed remotely. This is referred to as quickpass mode.

4-64 Server Classes

Adaptive Server Enterprise Release 11.5.x update

2. If the entire command cannot be forwarded to a remote server,
Component Integration Services declares and opens one or
more cursors in update mode, and begins a scan on the remote
table. Each cursor forwards as much of the original statement’s
predicates to the remote server as possible. For each row
fetched that meets the search criteria, a positioned update is
executed.

= When Component Integration Services forwards the update
command to a remote server, the table name used is the remote
table name, and the column names used are the remote column
names. These names may not be the same as the local proxy table
names.

= Component Integration Services generally passes the original
update syntax to remote servers as a single statement, but the
following conditions will likely cause the statement to be
executed using method 2, above:

- The statement contains multiple tables that are not located in
the same remote server

- The statement contains local tables (including temporary
tables)

- The statement contains case expressions

- The statement contains text or image columns

- The statement contains certain referential integrity checks

- The statement contains system functions in the predicate list

- The statement contains syntax that the remote server does not
support

< The following keywords are ignored and do not prevent
Component Integration Services from using quickpass mode:

- prefetch
index
Iru | mru

= The format involving where current of is never forwarded to a
remote server and causes the statement to be executed using
method 2 above.

= If Component Integration Services cannot pass the entire
statement to a remote server, a unique index must exist on the
table.

Component Integration Services User's Guide 4-65

update Adaptive Server Enterprise Release 11.5.x

Server Class sql_server

= The update command is fully supported for all datatypes except
text and image. text and image data cannot be changed with the
update command, except when setting the text or image value to
null. Use the writetext command instead.

= If quickpass mode is not used, data is retrieved from the source
tables, and the values in the target table are updated.
Server Class direct_connect

= The following syntax is supported by servers of class
direct_connect:

update [[database .] owner.{ table_name | view_name }
set[[[database .] owner.){ table_name .| view_name .}]
column_namel =

{ expressionl |NULL|(select statement)}
[, column_name2 =
{ expression2 |NULL|(select statement ...

[where search_conditions]

update commands that conform to this syntax use quickpass
mode, if the capabilities response from the remote server
indicates that all elements of the command are supported.
Examples of negotiable capabilities include: subquery support,
group by support, and built-in support.

= |f the remote server does not support all elements of the
command, or the command contains a from clause, Component
Integration Services issues a query to obtain the values for the set
clause, and then issues an update command to the remote server.

= Component Integration Services passes data values as
parameters to either a cursor or a dynamic SQL statement.
Language statements can also be used if the DirectConnect
supports it. The parameters are in the datatype native to
Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

Server Class db2

= The following syntax is supported by servers of class db2:

4-66 Server Classes

Adaptive Server Enterprise Release 11.5.x update

update [[database .] owner.[{ table_name | view_name }

set[[[database .| owner.){ table_name .| view_name .}]
column_namel =

{ expressionl |NULL|(select statement)}
[, column_name2 =
{ expression2 |NULL|(select statement M-

[where search_conditions]

Server’s of class db2 do not contain the capabilities negotiation
features of server class direct_connect, so the syntax passed to the
remote server is simpler than that allowed by Transact-SQL. The
syntax does not contain the following:

- Search conditions containing subqueries, group by, or order by
clauses

- Transact-SQL built-in functions
- Transact-SQL operators (such as bitwise operators)
- Syntax not allowed by DB2

Component Integration Services processes the update command
using method 2, described above, when the statement is
complex.

If the server is a DB2 system, use traceflag 11215 to instruct
Component Integration Services that the remote server is capable
of handling all DB2 syntax. This assumption is not made
automatically because not all gateways using the db2 server class
are actually connected to DB2 systems. When trace flag 11215 is
turned on, quickpass mode is used unless the following
conditions exist:

- The statement cannot be expressed in DB2 syntax
- The statement contains outer joins
- The statement contains like clauses with Sybase extensions

- The statement contains built-in functions that are not
supported by DB2

When an update statement contains a select statement, Component
Integration Services issues a query to obtain the values for the set
clause, and then issues an update command to the remote server,
unless trace flag 11215 is enabled.

When an update statement contains a from clause, Component
Integration Services issues a query to obtain the values for the set
clause, and then issues an update command to the remote server.

Component Integration Services User's Guide 4-67

update Adaptive Server Enterprise Release 11.5.x

Server Class generic
The following syntax is supported by servers of class generic:

update [[database .] owner.){ table_name | view_name}
set[[[database .| owner.){ table_name .| view_name .}]
column_namel =

{ expressionl |[NULL}
[, column_name2 =
{ expression2 |[NULL}]...

[where search_conditions]

= Server’s of class generic do not contain the capabilities negotiation
features of server class direct_connect, so the syntax passed to the
remote server is simpler than that allowed by Transact-SQL. The
syntax does not contain the following:

- Search conditions containing subqueries, group by, or order by
clauses

- Transact-SQL built-in functions
- Transact-SQL operators (such as bitwise operators)
- Syntax not allowed by the generic server class

Component Integration Services processes the update command
using method 2, described above, when the statement is
complex.

= When an update statement contains a complex search condition, a
select statement, or a from clause, Component Integration Services
issues a query to obtain the values for the set clause, and then
issues an update command to the remote server.

See Also

update in the Adaptive Server Reference Manual.

4-68 Server Classes

Adaptive Server Enterprise Release 11.5.x update statistics

update statistics

Function

Updates information about the distribution of key values in specified
indexes. Also updates row count information.

Syntax

update statistics table_name [index_name]

Comments

When the update statistics command is issued against a proxy table,
Component Integration Services provides meaningful statistics
on the remote table and the given index or on all indexes if no
index is specified. The results are used to construct a distribution
page for each index. This distribution page is stored in the
database. When a new distribution page is created for an index,
any previous distribution page for that index is freed.

Using update statistics, Component Integration Services creates
extremely accurate distribution statistics for remote tables. This
information is used to determine the optimal join order, giving
Component Integration Services the ability to generate optimal
gueries against remote databases which may not support cost-
based query optimization.

When Component Integration Services forwards the command to
a remote server, the table name used is the remote table name,
and the column names used are the remote column names. These
names may not be the same as the local proxy table names.

Obtaining information on an index, and especially on a number
of indexes, can be time consuming on large tables. Trace flag
11209 can be used to indicate that update statistics is to obtain row
count only. When this flag is on, previous distribution pages for
indexes are not replaced.

Component Integration Services retrieves row count information
even if no indexes exist.

Server Class sql_server

If the table on which the statistics are requested has no indexes,
Component Integration Services issues the following command:

select count(*) from table_name

It is also the only command issued when trace flag 11209 is on.

Component Integration Services User's Guide 4-69

update statistics

Adaptive Server Enterprise Release 11.5.x

4-70

= If the table has an index and the index is specified in the
command, Component Integration Services issues the following
commands:

select count(*) from table_name

select column_name [, column_name, ..]
from table_name
orderby column_name [, column_name, ..]

The column name(s) represent the column or columns that make
up the index.

For example, when the following command is issued:
update statistics customers ind_name

Component Integration Services issues:
select count(*) from customers

select last_name, first_name
from customers
order by last_name, first_name

= If the table has one or more indexes but no index is specified in
the statement, Component Integration Services issues the select
count (*) once, and the select/order by commands for each index.
Server Class direct_connect
= The processing of update statistics in server class direct_connect is
identical to that of server class sql_server described above.
Server Class db2
« The processing of update statistics in server class db2 is identical to
that of server class sql_server described above.
Server Class generic

= When an update statistics command is issued, Component
Integration Services issues the following command:

select count(*) from table_name
<= No distribution statistics are calculated for tables owned by
servers of this class.
See Also

update statistics in the Adaptive Server Reference Manual.

Server Classes

Adaptive Server Enterprise Release 11.5.x writetext

writetext

Function
Permits non-logged, interactive updating of an existing text or image

column.
Syntax
writetext [[database .] owner.] table_name . column_name
text_pointer [with log] data
Comments

= Component Integration Services processes the writetext command
when the table on which it operates has been created as a proxy
table.

= If the remote server referenced by the proxy table does not
support text pointers, writetext is not supported.

= To process the writetext command, Component Integration
Services issues the following Client Library commands using the
connection established to the remote server:

ct_command(command, CS_SEND_DATA_CMD, NULL,
CS_UNUSED, CS_COLUMN_DATA);

ct_data_info(command, CS_SET, CS_UNUSED, iodesc)
ct_send_data(command, (CS_VOID *) start, length)

Server Class sql_server
= The writetext command is processed using a separate connection to
the remote server.
Server Class direct_connect

= If the DirectConnect supports text pointers, Component
Integration Services treats the DirectConnect as if it were a server
in class sql_server.

Server Class db2
= writetext is not supported for tables owned by servers in this class.

Server Class generic
= writetext is not supported for tables owned by servers in this class.

Component Integration Services User's Guide 4-71

writetext Adaptive Server Enterprise Release 11.5.x

See Also
writetext in the Adaptive Server Reference Manual.

4-72 Server Classes

Utility Programs

This chapter describes the utility programs that are unique to
Component Integration Services. Many of the standard Adaptive
Server utility programs, such as bcp, isgl and startserver are also
required for Component Integration Services users. See the Utility
Programs manual for your platform for more information.

Utility programs are commands that you invoke directly from the
operating system.

The UNIX system shell interprets the utility commands. Place
characters with special meaning to the shell, such as the backslash
(\), asterisk (*), slash (/), and spaces, in quotes. You can precede
some special characters with the backslash (\) to “escape” them. This
prevents the shell from interpreting the special characters.

Component Integration Services User’s Guide 5-1

ddigen Adaptive Server Enterprise Release 11.5.x

ddligen

Function

The ddigen utility is used to back up data definition statements
associated with Component Integration Services or to migrate data
definitions for databases from OmniConnect release 10.5 to Adaptive
Server release 11.5. It generates an isql script containing data
definition language statements for objects defined in Component
Integration Services. See also Chapter 3, “Backing Up Your System.”

Syntax

The parameters listed with accompanying text require an argument.
Those listed without text do not require or accept an argument.

ddigen
[-S server]
[-P[password 1]
[-F output_file_name]
[-V]
[[d[database _name 1]
[-e exclude_server]
[-X]
[-v]
[-a display_charset]
[-[J client_charset]
[z language]

Parameters

-S server — specifies the name of the server to which you want to
connect. This is the name that ddigen looks for in the interfaces file.
If -S is omitted, ddigen looks for the server specified with your
DSQUERY environment variable. If DSQUERY is not defined,
SYBASE is used.

-P password — specifies the password of the “sa” user. If you do not
specify the -P parameter, ddigen prompts for a password. If the
password is NULL, use the -P parameter without any password.

-F — specifies the name of the operating system file in which to store
the output from ddigen. If this parameter is omitted, output is
directed to the file ddigen.sql.

-V - runs ddigen in verbose mode. Verbose mode causes ddigen to print
informational messages as it performs its tasks.

5-2 Utilities

Adaptive Server Enterprise Release 11.5.x ddlgen

-d — specifies the database to be processed. There are three available
choices:

- If the -d parameter is omitted, ddigen backs up all the databases.

- If the -d parameter is used with no argument, ddigen issues a
prompt prior to processing each database, and once before
processing all logins. This allows you to select which databases
ddlgen processes.

- If the -d parameter is followed by a database_name, the named
database is processed. Each database specified must be
preceded with “-d”. Multiple database names are permitted.
This option is used as follows:

-d database_a -d database_b -d database c

-e exclude_server — specifies a server, and all objects mapped to that
server that are to be excluded from processing. Multiple server
names are permitted. Each server specified must be preceded
with “-e”. If no servers are specified all servers are processed.

-x — creates a trace file called debug. The trace file records:
- Entry and exit from internal routines
- SQL statements presented to the source server
- Objects and definitions found in the source server
- Objects and definitions not processed in the source server

-v — prints the ddlgen version and copyright strings. No other
operations are performed, and ddlgen exits.

-adisplay_charset — allows you to run ddigen from a terminal whose
character set differs from that of the machine on which ddigen is
running. -a in conjunction with -J specifies the character set
translation file (.xIt file) required for the conversion. Use -a without
-Jonly if the client character set is the same as the default character
set.

-J client_charset — specifies that the server convert to and from
client_charset, the character set used on the client. -J with no
argument sets character conversion to NULL. No conversion takes
place. Use -J if the client and server use the same character set.
Omitting -J sets the character set to the default for the platform. The
default may not necessarily be the character set that the client is
using.

Component Integration Services User's Guide 5-3

ddigen Adaptive Server Enterprise Release 11.5.x

-z language — specifies the official name of the alternate language in
which to display ddigen messages. Without -z, ddigen uses the
server’s default language.

Examples

The following example shows the two-step process to use ddigen as a
migration tool:

1. Direct ddigen to the OmniConnect server OMNI105 using the
following assumptions:

- The password is NULL
- The output script file is named sample.sg|
- Only record objects from the ident database
- Exclude any objects that map to the server OMNINEW
The syntax looks like this:
ddigen -S omnil05 -P -F sample.sql -d ident -e omninew

2. Direct the sample.sqgl script to the server OMNINEW:
isgl -Usa -P -Somninew < sample.sq|

Obijects from the ident database in OMNI105 are migrated to the

server OMNINEW.

Comments

= The following process outlines a ddlgen session:
- User submits ddigen with parameters
- ddlgen logs into -S server
- User responds to prompts (if any)
- ddlgen generates script
- User reviews script and customizes
- User directs script to -S server or other server

= The ddigen utility is used to migrate or back up data definitions
associated with Component Integration Services. ddigen connects
to a server that must be either an Adaptive Server with
Component Integration Services enabled or an OmniConnect
release 10.5 server. The ddigen utility examines the version string

5-4 Utilities

Adaptive Server Enterprise Release 11.5.x

ddigen

and determines the action to take based on the server type as

shown in Table 5-1:

Table 5-1:

ddlgen action by server type

Server Type

ddlgen Action

OmniConnect release 10.5

Adaptive Server 11.5 with Component
Integration Services configured
Adaptive Server 11.5 with Component
Integration Services not configured

OmniSQL Server, pre-release 11.0 SQL
Server, or any other target that ddigen

A migrate operation is required.
A backup operation is required.

Inform the user that Component
Integration Services is not
configured, and that ddlgen cannot
process this server.

Inform the user that processing
cannot proceed.

11.5 cannot process

ddlgen connects to the source server as user "sa".

= ddlgen preserves the owner of tables and other objects by issuing
setuser statements to the output script.

= The ddigen utility generates an isql script containing data
definition language (DDL) statements for objects in the server.
The isqgl script can be used to restore a server by reinstalling the
server and then running the script using isgl. The isgl script can
also be used to replicate databases or servers by editing the script
and running it against other servers.

= ddlgen records user-written stored procedures and permissions for
the procedures to the output script. For the master database and
sybsystemprocs database, stored procedures are written to the
output script if the create date column (crdate) contains a date
more than 5 seconds after Component Integration Services install
scripts were run. This allows processing of user-written
procedures and permissions for the procedures, and avoids
processing Sybase-supplied stored procedures. Sites should
preserve user_written procedures is a script in case installmaster is
re-run after the initial installation.

< Whenddligen is used as a migration tool, sp_configure statements are
not written to the output script. For using ddligen as a backup tool
with release 11.5, Sybase recommends saving the severname.cfg
file in the SYBASE directory, and reapplying these configuration
properties after the server is restored.

= The ddigen utility writes create database statements at the beginning
of the isgl script file for the databases that are being processed.
These statements should be reviewed when ddligen is used as a

Component Integration Services User's Guide 5-5

ddigen

Adaptive Server Enterprise Release 11.5.x

5-6

backup tool. The script must be modified to specify the devices
and sizes of the databases that will be created prior to running the
script when using ddigen to migrate data.

The actual passwords for logins are not written to the script file.
Instead, login passwords are shown as “restored”, and external
login passwords are shown as NULL. The passwords in the
sp_addlogin and sp_addexternlogin statements can be modified before
the script is executed, or the passwords can be changed after the
script has been run by using the sp_password procedure to change
login passwords or by executing another sp_addexternlogin
statement to change external login passwords.

Any syntax error results in a formatted display of valid usage.

ddlgen does not write data definition statements for local tables to
the output script. Sybase recommends that the data definition
statements and the data in local tables be backed up using the
standard Adaptive Server backup utilities.

ddlgen checks remote table names and column names against a list
of Sybase keywords. If the remote object name is a Sybase
keyword, ddlgen issues set quoted_identifer on before using the
keyword in SQL syntax. The keyword is enclosed in double
guotes. Any non-keyword syntax requiring quotes employs
single quotes. After issuing the SQL syntax with Sybase
keywords, ddigen writes set quoted_identifier off to the output script.

Example:

set quoted_identifier on
create existing table contract_status

(

contract_num int,
"confirm" char(10)

set quoted_identifier off

Utilities

Adaptive Server Enterprise Release 11.5.x defgen

defgen

Function

Creates table definition statements for tables owned by servers in
classes of types sql_server, generic, db2, and direct_connect
(access_server). This utility is used to define data located on remote
servers quickly by generating the sp_addobjectdef, create existing table and
update statistics statements.

Syntax

The parameters listed with accompanying text require a value. Those
listed without text do not require or accept a value.

defgen [-U username]
[-P password]
[-S server]
[-D database]
-s foreign_server
[-d foreign_database]
[-n foreign_owner]
[-F output_file]
[-V]
[-L]
[-T table_prefix]
[-e wildcard_escape_character]
[-v]
[-x]
[-o]
[-a display_charset]
[-J client_charset]
[-z language]
[[owner.] tablename [[owner.] tablename...]|

Parameters

-Uusername — specifies a login name for the server. Logins are case-
sensitive. If no parameter is specified username defaults to
operating system user name.

-Ppassword — specifies the user’s password. If no -P parameter is given,
defgen prompts the user for a password. Passwords are case-
sensitive and can be 1-30 characters in length or NULL.

Component Integration Services User's Guide 5-7

defgen

Adaptive Server Enterprise Release 11.5.x

5-8

-Sserver — specifies the name of the server to which you want to
connect. This is the name that defgen looks for in the interfaces file.
If -S is omitted, defgen looks for the server specified with your
DSQUERY environment variable. If DSQUERY is not defined,
SYBASE is used.

-Ddatabase — specifies the name of the database in which the specified
tables are to be placed. If not specified, the user’s default database
is used.

-sforeign_server — specifies the name of the foreign server in the
sysservers system table. This parameter is required.

-dforeign_database — specifies the name of the database in
foreign_server that contains the specified tables. This is allowed if
foreign_server is of class sql_server, generic, or direct_connect
(access_server).

-nforeign_owner — qualifies the tables to be defined by selecting only
those tables owned by foreign_owner. When specific tables are not
supplied, definitions are generated for all the tables owned by
foreign_owner. This parameter defaults to the user name used to
access the foreign server. For DB2, this parameter is synonymous
with authorization ID. Wildcard pattern matching characters, as
supported by foreign_server, may be used in foreign_owner.

-Foutput_file — specifies the name of the operating system file in which
to store the output from defgen. If this parameter is not used, output
is directed to the file defgen.sql.

-V — runs defgen in verbose mode. Verbose mode causes defgen to print
informational messages as it performs its tasks.

-L — specifies that all table names and column names for the tables
created within the server are in lowercase.

-Ttable_prefix — specifies a string used to prefix all table definitions for
tables to be created by running the script.

-ewildcard_escape_character — specifies a wildcard escape character to
precede underscores in owner and table names when issuing
sp_tables and sp_columns.

-v — prints the defgen version and copyright strings. No other
operations are performed, and defgen exits.

-x — creates a trace file called debug.

Utilities

Adaptive Server Enterprise Release 11.5.x defgen

-0— instructs defgen to build the create existing table statement using the
same column order as the actual table. This is the default for all
servers except DB2 servers.

-adisplay_charset — allows you to run defgen from a terminal whose
character set differs from that of the machine on which defgen is
running. -a in conjunction with -J specifies the character set
translation file (.xlIt file) required for the conversion. Use -a without
-Jonly if the client character set is the same as the default character
set.

-Jclient_charset — specifies that the OmniConnect convert to and from
client_charset, the character set used on the client. -J with no
argument sets character conversion to NULL. No conversion takes
place. Use -J if the client and server use the same character set.
Omitting -J sets the character set to the default for the platform. The
default may not necessarily be the character set that the client is
using.

-zlanguage — specifies the official name of the alternate language in
which to display defgen messages. Without -z, defgen uses the
server’s default language.

[[owner.]table [[owner.]table...]] — If one or more tables are listed on the
command line, then table definitions are generated only for those
tables. If no tables are listed, table definitions are generated for all
tables.

Examples

1. defgen -Usa -P -SOMNI -Dtestdb -sSYBASE -dpubs
-ndbo -Tsyb_ -Fsybpubs.sql
Builds an output file for all tables in the pubs database owned by
“dbo”, puts them in a database called testdb, prefixes all table
definitions with the string “syb_”’, and names the output file
sybpubs.sql.

2. defgen -Usa -P -SOMNI -Dtestdb -sORACLE -nscott
-Tora_ -Fora.sql

Builds an output file for all tables owned by “scott” in a
DirectConnect server called ORACLE, puts them in a database

called testdb, prefixes all table definitions with the string “ora_”,
and names the output file ora.sql.

3. defgen -Usa -P -SOMNI -Ddb2_tables -sDB2 -Tdb2_
-Fdb2.sgl dsn8220.act dsn8220.emp

Component Integration Services User's Guide 5-9

defgen

Adaptive Server Enterprise Release 11.5.x

5-10

Builds an output file for two tables (dsn8220.act and dsn8220.emp)
in a server of class db2 called DB2, puts them in a database called
db2_tables, prefixes all table definitions with the string “db2_",
and names the output file db2.sql.

4. defgen -Usa -Psapw -SOMNI -Dinf_app -sINFMX

-Tinf_ -Finf_app.sql inf_dbo.clients inf_dbo.sales

Builds an output file for two tables (inf_dbo.clients and
inf_dbo.sales) in a DirectConnect server called INFMX, puts them
in a database called inf_app, prefixes all table definitions with the
string “inf_", and names the output file inf_app.sql.

defgen -Usa -P -SOMNI -Drdb_tables -sRDB
-TRDB_ -Frdb.sql -dpersonnel

Builds an output file for all tables in the personnel database in a
server of class generic called RDB, puts them in an Adaptive
Server database called rdb_tables, prefixes all table definitions
with the string “RDB_", and names the output file rdb.sql.

Comments

The following process outlines a defgen session:
- User submits defgen with parameters

- defgen logs into -S server

- -Sserver logs into -s foreign server

- defgen generates script

- User reviews script and customizes

- User directs script to -S server or other server

The defgen utility allows the System Administrator to set up a
server quickly and easily. It generates the required sp_addobjectdef,
create existing table, and update statistics commands necessary for the
server to communicate with foreign database tables and views.
These generated statements are placed in the output file defined
by the -F option or in defgen.sql (the default).

defgen logs into the server and obtains the server class of the
server defined with the -s option. For release 10.0 and later
Servers, system catalogs are queried for matching table and view
information. For all other servers, defgen issues ODBC catalog
stored procedure commands. For example:

exec DB2...sp_tables "EMP", "DNS8220", "

Utilities

Adaptive Server Enterprise Re

lease 11.5.x defgen

The system catalogs in the remote server are scanned for
matching entries. For each table or view found, corresponding
column name, type, lengths, and NULL attributes are obtained.
The native server datatypes are converted to Adaptive Server
datatypes, according to the conversion tables shown in sections
that follow.

After running defgen, the output file can be executed by using the
isgl utility. This SQL output file updates the system catalogs with
information about each remote server table that defgen selected
from the remote server:

isql -Uname -Ppasswd -SOMNI <defgen.sqgl >defgen.out

After directing the output file to the server, the tables can be used
in SQL statements, stored procedures, views, and so on, as if they
were all local to the server.

The output of defgen can be used to update multiple servers with
the same information, allowing any number of copies of the
server to access the same remote servers.

Adaptive Server Datatype Mapping

The same datatype is used in the server table definition as is found in

the

remote Adaptive Server.

If defgen encounters a user-defined datatype on the target table, it

use

s the underlying storage type and places the user-defined

datatype within a comment.

DB2 Datatype Mapping

Table 5-2 lists the Adaptive Server datatypes that can be used for
existing DB2 datatypes. Note that for the unsupported DB2 types
graphic, vargraphic, and long vargraphic, defgen does not generate an
error; instead, these DB2 datatype names are added to the table
definition in the output file, and errors are raised when the output
file is executed.

Table 5-2: DB2 to Adaptive Server default datatype mapping

DB2 Datatype Adaptive Server Datatype
int int

smallint smallint

float float

double precision float

Component Integration Services User's Guide 5-11

defgen Adaptive Server Enterprise Release 11.5.x

Table 5-2: DB2 to Adaptive Server default datatype mapping (continued)

DB2 Datatype Adaptive Server Datatype
real real

decimal decimal

number numeric
char(n) char(n)
varchar(n) varchar(n)

long varchar varchar(255)
date datetime

time datetime
timestamp datetime
graphic Not supported
vargraphic Not supported

long vargraphic Not supported

Generic Datatype Mapping

The following table lists the Adaptive Server datatypes that can be
used with ODBC datatypes for servers in server class generic.

Table 5-3: Generic to Adaptive Server default datatype mapping

5-12

ODBC Datatype Adaptive Server Datatype
int int

smallint smallint

tinyint tinyint

float float, money

double precision float, money

real

real, smallmoney

decimal (scale > 0 or precision >=10)

float, money

decimal (scale = 0 and precision <=9)

int, float, money

number (scale > 0 or precision >=10)

float, money

number (scale = 0 and precision <=9)

int, float, money

char char, varchar
varchar char, varchar
Utilities

Adaptive Server Enterprise Release 11.5.x

defgen

Table 5-3: Generic to Adaptive Server default datatype mapping (continued)

ODBC Datatype

Adaptive Server Datatype

date datetime (time set to 12:00AM)
time datetime (date set to 1/1/1900)
timestamp datetime

bit bit

binary binary, varbinary

varbinary binary, varbinary

DirectConnect Datatype Mapping

Table 5-4 lists the Adaptive Server datatypes that can be used with
direct_connect (access_server) datatypes.

Table 5-4: DirectConnect default datatype mapping

ODBC Datatype Adaptive Server Datatype
bigint decimal or numeric

int int

smallint smallint

tinyint tinyint

float float, money

double precision float, money

real

real, smallmoney

decimal

decimal

numeric

numeric

char (precision < 256)

char, varchar

char (precision >= 256)

text

varchar (precision < 256)

char, varchar

varchar (precision >= 256)

text

date datetime (time set to 12:00AM)
time datetime (date set to 1/1/1900)
timestamp datetime

bit bit

binary (precision < 256)

binary, varbinary

Component Integration Services User's Guide 5-13

defgen Adaptive Server Enterprise Release 11.5.x

Table 5-4: DirectConnect default datatype mapping (continued)

ODBC Datatype Adaptive Server Datatype
binary (precision >=256) image
varbinary (precision < 256) binary, varbinary
varbinary (precision >=256) image

See Also

isql in the Utility Programs manual

sp_addserver, create existing table, and sp_addobjectdef in the Adaptive Server
Reference Manual.

5-14 Utilities

Troubleshooting

This appendix provides troubleshooting tips for problems that you
may encounter when using Component Integration Services. The
purpose of this chapter is:

= To provide enough information about certain error conditions so
that you can resolve problems without help from Technical
Support

= To provide lists of information that you can gather before calling
Technical Support, which will help resolve your problem quickly

= To provide you with a greater understanding of Component
Integration Services

Error Messages and the Troubleshooting Guide should also be used for
troubleshooting. While this appendix provides troubleshooting tips
for most frequently asked Component Integration Services
questions, Error Messages lists all error messages with a one-line
recovery procedure; the Troubleshooting Guide provides tips on SQL
Server problems that are not specific to Component Integration
Services.

For the most up-to-date information on troubleshooting and
technical tips, refer to Sybase’s electronic services. See “Other
Sources of Information” on page -xvii.

Problems Accessing Component Integration Services

name
enable cis

If you issue a command that accesses a remote object and
Component Integration Services is not found, the following error
message appears:

4050 cis extension not enabled or installed
Do the following:

= Verify that the enable cis configuration parameter is set to 1 by
running:

sp_configure "enable cis"
sp_configure returns the following row for the enable cis parameter:

min max config value run value
0 1 1 1

Component Integration Services User’s Guide A-1

Problems Using Component Integration Services

Adaptive Server Enterprise Release 11.5.x

Sp_

Both “config value” and “run value” should be 1. If both values
are 0, set the enable cis configuration parameter to 1, and restart
the server. Use the syntax:

configure "enable cis" 1

If “config value” is 1 and “run value” is 0, the enable cis
configuration parameter is set, but will not take effect until the
server is restarted.

Check the error log. If Component Integration Services loaded
correctly, you will see the following line at the start of the error
log:

Distributed services option loaded.

If there was a problem loading Component Integration Services,
the message stating the problem is displayed instead. Contact

Sybase Technical Support to correct the problem. (See “If You
Need Help” on page A-8.)

Problems Using Component Integration Services

This section provides tips on how to correct problems you may
encounter when using Component Integration Services.

Unable to Access Remote Server

When you cannot access a remote server, the following error
message is returned:

11206 Unable to connect to server server_name .

The message will be preceded by one of the following Client-Library

messages:
Requested server name not found
Driver call to connect two endpoints failed
Login failed

The Client-Library message indicates why you cannot access the
remote server as described in the following sections.

Requested Server Name Not Found

The server is not defined in the interfaces file when the following
messages display:

Troubleshooting

Adaptive Server Enterprise Release 11.5.x Problems Using Component Integration Services

Requested server name not found
11206 Unable to connect to server server_name .

When a remote server is added using the sp_addserver stored
procedure, the interfaces file is not checked. It is checked the first
time you try to make a connection to the remote server. To correct
this problem, add the remote server to the interfaces file that is being
used by Component Integration Services.

Driver Call to Connect Two Endpoints Failed

If the remote server is defined in the interfaces file, but no response
was received from the connect request, the following messages are
displayed:

Driver call to connect two endpoints failed

11206 Unable to connect to server server_name .
Check the following:
= Isyour environment set up correctly?

To test this, try to connect directly to the remote server using isqgl
or a similar tool. Do this by following these steps:

- Log into the machine where Component Integration Services is
running.

- Setthe SYBASE environment variable to the same location that
was used when Component Integration Services was started.
Component Integration Services uses the interfaces file in the
directory specified by the SYBASE environment variable,
unless it is overridden in the runserver file by the -i argument.

O Note

These first two steps are important to ensure that the test environment is
the same environment that Component Integration Services was using
when you could not connect to the remote server.

- Useisgl or asimilar tool to connect directly to the remote server.

If the environment is set up correctly and the connection fails,
continue through this list. If the connection is made, there is a
problem with the environment being used by Component
Integration Services.

< |sthe remote server up and running?

Component Integration Services User's Guide A-3

Problems Using Component Integration Services Adaptive Server Enterprise Release 11.5.x

Log into the machine where the remote server is located to verify
the server is running. If the server is running, continue through
this list. If the server is hung, restart the server and try your
guery again.

= |sthe entry for the remote server in the interfaces file correct:

- Is the machine name the correct name for the machine the
software is loaded on?

- If the interfaces file is a text file, do the query and master lines
start with a tab and not spaces?

- Is the port number available? Check the services file in the /etc
directory to ensure that the port number is not reserved for
another process.

If the port is available, is it already in use? To determine this on
UNIX, run the command:

netstat -a

Login Failed

If the remote server is accessed, but the login name and password are
not correct, the following messages display:

Login failed
11206 Unable to connect to server server_name .

Check to see if there is an external login established for the remote
server by executing:

exec sp_helpexternlogin server_name

If no external login is defined, Component Integration Services uses
the user login name and password that was used to connect to
Adaptive Server. For example, if the user connected to Adaptive
Server using the “sa” account, Component Integration Services uses
the login name “sa” when making a remote connection. Unless the
remote server is another Adaptive Server, the "sa" account probably
does not exist, and an external login must be added using
sp_addexternlogin.

If an external login is defined, verify that the user’s login name is
correct. Remote server logins are case sensitive; for example, DB2
logins are all uppercase. Is the case correct for the user login name
you are using and the entry in externlogins?

If the login name is correct, the password might be incorrect. It is not
possible to display the password. If the user login name is incorrect

Troubleshooting

Adaptive Server Enterprise Release 11.5.x Problems Using Component Integration Services

or if the password might be incorrect, drop the existing external login
and redefine it by executing the commands:

exec sp_dropexternlogin server_name , login_name
go

exec sp_addexternlogin server_name , login_name
remote_login , remote_password

go

Unable to Access Remote Object

When you are unable to access a remote object, the following error
message appears:

Error 11214 Remote object object does not exist.

The problem may be in the local proxy table definition or in the table
itself on the remote server.

Verify the following:

Has the object been defined in Component Integration Services?
To confirm, run:
sp_help object_name

If the object does not exist, create the object in Component
Integration Services (see “Mapping Remote Objects to Local
Proxy Tables” on page 3-4).

If the object has been defined in Component Integration Services,
is the definition correct?

Table names can have four parts with the format
server.doname.owner.tablename. The dbname part is not valid for
DB2, Oracle or InfoHUB servers.

If the object definition is incorrect, delete it using sp_dropobjectdef,
and define correctly using sp_addobjectdef.

If the local object definition is correct, check the table on the
remote server:

- Are permissions set to allow access to both the database and
table?

- Has the database been marked suspect?
- Is the database available?

- Can you access the remote table using a native tool (for
example, SQL on Rdb or SQL*Plus on Oracle)?

Component Integration Services User's Guide A-5

Problems Using Component Integration Services Adaptive Server Enterprise Release 11.5.x

Problem Retrieving Data From Remote Objects

When you receive error messages pertaining to mismatches in
remote objects, the Component Integration Services object definition
does not match the remote object definition. This happens if:

= The object definition was altered outside of Component
Integration Services

= Anindex was added or dropped outside of Component
Integration Services

Object Is Altered Outside Component Integration Services

Once an object is defined in Component Integration Services,
alterations made to an object at the remote server are not made to the
local proxy object definition. If an object is altered outside of
Component Integration Services, the steps to correct the problem
differ, depending on whether create existing table or create table was used
to define the object.

To determine which method was used to define the object, run the
statement:

sp_help object_name

If the object was defined via the create existing table command, the
following message is returned in the result set:

Object existed prior to CIS.

If this message is not displayed, the object was defined via the create
table command.

If create existing table was used to create the table in Component
Integration Services:

1. Use the drop table command in Component Integration Services.

2. Create the table again in Component Integration Services using
create existing table. This creates the table using the new version of
the table on the remote server.

If the table was created in Component Integration Services using
create table, you will drop the remote object when you use drop table. To
prevent this, follow these steps:

1. Rename the table on the remote server so the table is not deleted
when you use drop table.

2. Create a table on the remote server using the original name.

Troubleshooting

Adaptive Server Enterprise Release 11.5.x Problems Using Component Integration Services

O WARNING!

3. Usedrop table in Component Integration Services to drop the table
in Component Integration Services and on the remote server.

4. Rename the saved table in step 1 with its original name on the
remote server.

5. Create the table again in Component Integration Services using
create existing table.

Do not use drop table in Component Integration Services prior to
renaming the table on the remote server, or you will delete the table on
the remote server.

A good rule to follow is to create the object on the remote server, and
then do a create existing table to create the object in Component
Integration Services. This enables you to correct mismatch problems
with fewer steps and with no chance of deleting objects on the
remote server.

Index Is Added or Dropped Outside CIS

Component Integration Services is unaware of indexes that are
added or dropped outside Component Integration Services. Verify
that the indexes used by Component Integration Services are the
same as the indexes used on the remote server. Use sp_help to see the
indexes used by Component Integration Services. Use the
appropriate command on your remote server to verify the indexes
used by the remote server. For example, you can use the describe
command with an Oracle server or select * from syscolumns, sysindexes
for a DB2 server.

If the indexes are not the same, the steps to correct the problem differ,
depending on whether create existing table or create table was used to
define the object.

To determine which method was used to define the object, run the
statement:

sp_help object_name

If the object was defined via the create existing table command, the
following message is returned in the result set:

Object existed prior to CIS.

Component Integration Services User's Guide A-7

If You Need Help

Adaptive Server Enterprise Release 11.5.x

If You Need Help

If this message is not displayed, the object was defined via the create
table command.

If create existing table was used to create the object:
1. Use drop table in Component Integration Services.

2. Re-create the table in Component Integration Services using
create existing table. This will update the indexes to match the
indexes on the remote table.

If create table was used to create the object:
1. Use drop table to drop the index from the remote table.

2. Re-create the index in Component Integration Services using
create index. This creates the index in Component Integration
Services and the remote server.

An alternative method if create table was used to define the object is to
turn on trace flag 11208. This trace flag prevents the create index
statement from transmitting to the remote server. To use trace flag
11208, follow these steps:

1. Turnon trace flag 11208:

dbcc traceon(11208)
2. Create the index using create index.
3. Turn off trace flag 11208:

dbcc traceoff(11208)

If you encounter a problem that you cannot resolve using the
manuals, ask the designated person at your site to contact Sybase
Technical Support. Gather the following information prior to calling
Technical Support to help resolve your problem more quickly.

= |faproblem occurs while you are trying to access remote data,
execute the same script against a local table. If the problem does
not exist on the local table, it is specific to Component Integration
Services and you should continue through this list.

< Find outwhat version of Component Integration Services you are
using:

select @@cis_version

« Note the SQL script that reproduces the problem. Include the
script that was used to create the tables.

Troubleshooting

Adaptive Server Enterprise Release 11.5.x If You Need Help

Find the processing plan for your query. This is generated using
set showplan. An example of this is:

set showplan, noexec on

go

select au_Iname, au_fname from authors
where au_id = ‘A1374065371’

go
The output for this query will look like this:
STEP1
The type of query is SELECT.
FROM TABLE
authors

Nested iteration
Using Clustered Index

The noexec option compiles the query, but does not execute it. No
subsequent commands are executed until noexec is turned off.

Obtain the event logging when executing the query by turning on
trace flags 11201 — 11205. These trace flags log the following:

- 11201 - Client connect, disconnect, and attention events

- 11202 - Client language, cursor declare, dynamic prepare, and
dynamic execute-immediate text

- 11203 - Client rpc events
- 11204 — Messages routed to client
- 11205 - Interaction with remote servers

After executing the script with the trace flags turned on, the
logging is found in the error log in the $SYBASE/install
directory. For example:

dbcc traceon (11201,11202,11203,11204,11205)
go
select au_Iname, au_fname from authors
where au_id ='A1374065371"
go
dbcc traceoff (11201,11202,11203,11204,11205)
go
The error log output is as follows (the timestamps printed at the
beginning of each entry have been removed to improve
legibility):

Component Integration Services User's Guide A9

If You Need Help

Adaptive Server Enterprise Release 11.5.x

A-10

server LANGUAGE, spid 1: command text:

select au_Ilname, au_fname from authors where au_id
='A1374065371'

server SIGDISABLE, spid 1: signals disabled on
endpoint 10

server RMT_CONNECT, spid 1: connected to server
'SYBASE', using language/charset
'us_english.iso_1', packet size 512

server SYB_TSCN, spid 1, server SYBASE:
SELECT au_id, au_Iname, au_fname FROM
pubs2.dbo.authors WHERE au_id = "A1374065371"
server OMNIENDS, spid 1: closing cursor 'O1_16'
server OMNICLOS, spid 1: deallocating cursor
'O1_16', type CONNECTION.

This tracing is global, so once the trace flags are turned on, any
query that is executed will be logged; therefore, turn tracing off
once you have your log. Also, clean out the error log periodically
by bringing the server down, renaming the error log, and
restarting the server. This creates a new error log.

Troubleshooting

Index

A

Access methods 2-2
access_server server class 4-2
connection management 2-20
datatype conversions 4-21
datatype mapping using defgen
utility 5-13
with text and image datatypes 2-19
Adding
columns to a table 4-6
rows to a table or view 4-46
Aliases, user
remote logins 3-3
Allocating resources with
sp_configure 3-11
alter table command 4-6
@@textsize global variable 2-17
auto identity database option 2-8
Automatic connections 2-10
Automatic data definitions 5-7

B

Backups 3-22
See also ddlgen utility
configuration file 3-24
databases 5-2
proxy tables 3-23
bep (bulk copy utility)
for text and image datatypes 2-18
begin transaction command 2-13
proxy tablesand 4-11

C

Changes, canceling. See rollback
command
Changing
remote tables 4-6
Checkpoint process

See also Recovery; Savepoints
cis bulk insert batch size configuration
parameter 3-13
cis connect timeout configuration
parameter 3-14
cis cursor rows configuration
parameter 3-14
cis packet size configuration
parameter 3-14
cis rpc handling configuration
parameter 3-15
Client-Library functions 2-3
connection management 2-20
ct_send_data 2-18
close command 4-13
Closing cursors 4-13
Clustered indexes
See also Indexes
Columns
adding to table 4-6

creating indexes on proxy table 4-25

commit command 4-14
remote servers and 2-13
commit work command. See commit
command
Component Integration Services
configuring and tuning 3-10
enabling 1-3
running 1-3
settingup 1-3 3-1
users 1-2
Configuration (Server)

Component Integration Services 1-3,

3-1,3-10
Configuration parameters

Component Integration Services 3-12

to 3-15
connectto command 2-8, 3-3
connect to option, grant 2-9
Connections
listing of remote 3-18

Component Integration Services User's Guide

Index-1

Adaptive Server Enterprise Release 11.5.x

management of 2-20
maximum of CIS 3-13
permission 2-9
physical and logical 3-15
timeouts 3-14
verification 2-13 3-3
Constraints
changing table 4-6
preventing 3-19
Conventions
used in manuals xviii
Converting remote server datatypes 2-7
server class db2 4-23
server class db2 using defgen 5-11
server class direct_connect or
access_server using defgen 5-13
server class generic using defgen 5-12
server class sql_server using
defgen 5-11
Copying
text and image datatypes 2-18
create database command
from ddigen 5-5
create existing table command 2-5, 2-6
datatype conversions and 2-7
example 2-7
generated by defgen utility 5-10
proxy tables 4-16
create index command 4-25
query plan for remote tables 2-30
create table command
proxy tables 4-27
query plan 2-29
remote tables 2-5, 2-6
Creating
indexes on proxy tables 4-25
proxy tables 4-16 4-27
ct_send_data Client-Library function 2-18
Cursor result set
returning rows 4-44
Cursors
closing 4-13
deallocating 4-32
fetching remotely 4-44

Index-2

opening 4-49
row count, setting 3-14

D

Data modification
text and image with writetext 4-71
update 4-64
Database syntax, using native. See
Passthrough mode
Datatype conversions 4-4
remote servers 2-7
server class db2 4-23
server class db2 using defgen 5-11
server class direct_connect or
access_server 4-21
server class direct_connect or
access_server using defgen 5-13
server class generic using defgen 5-12
server class sql_server using defgen
utility 5-11
db2 server class
connection management 2-20
datatype conversions 4-23
datatype mapping using defgen
utility 5-11
with text and image datatypes 2-20
db2 syntax mode, Open Server
applications that support 4-28
dbcc (Database Consistency
Checker) 3-17to 3-19
DB-Library programs
prepare transaction 4-50
dbmoretext DB-Library function 2-18
dbwritetext DB-Library function 2-18
ddigen utility 5-2to 5-6
editing login passwords 5-6
editing the create database
command 5-5
recovering Component Integration
Services objects 3-23
reinstalling 5-5
deallocate cursor command
remote servers and 4-32

Adaptive Server Enterprise Release 11.5.x

Deallocating cursors 4-32
declare cursor command 4-33
defgen utility 5-7to 5-14
examples 5-9
output files 5-10
server class db2 datatype
mapping 5-11
server class direct_connect or
access_server datatype
mapping 5-13
server class generic datatype
mapping 5-12
server class sql_server datatype
mapping 5-11
syntax 5-7to 5-9
updating multiple servers 5-11

updating system catalogs with output

files 5-11
Defining
default storage locations 2-4
indexes 2-6
remote objects 2-3to 2-5, 3-4t0 3-6
remote servers 2-3, 3-1to 3-3
storage locations of remote
objects 2-4,3-4
tables 2-5,2-6to 2-8
delete command
remote tables 4-34
Deleting
See also Dropping
direct_connect server class 4-2
connection management 2-20
datatype mapping using defgen
utility 5-13
with text and image datatypes 2-19
Direct CONNECT servers 1-3
disconnect command 2-9
drop database command
remote servers 4-38
drop index command
proxy tables 4-39
query plan for remote tables 2-31
drop table command
proxy tables 4-41

Component Integration Services User's Guide

query plan for remote tables 2-30
Dropping

databases from remote servers 4-38

indexes on proxy tables 4-39

proxy tables 4-41

rows from a table 4-34

E

enable cis configuration parameter 3-13
Enabling Component Integration
Services 1-3
Error logging of text and image
datatypes 2-18
Event logging 3-18
execute command
RPCs 4-43
External logins 3-3
restoring from ddigen utility 5-6

F

fetch command
proxy tables 4-44
Fetching cursors
proxy tables 4-44
Files
See also Tables; Transaction log
interfaces 3-2
sgl.ini file 3-2

G

generic server class 4-4
connection management 2-20
datatype mapping using defgen

utility 5-12

grant command
passthrough connections 2-9

grant connect to command 2-9

Index-3

Adaptive Server Enterprise Release 11.5.x

IDENTITY columns 2-8
image datatype 2-16
bulk copy to remote servers 2-18
converting 2-17
entering values 2-18
error logging 2-18
padding 2-17
pattern matching 2-17
pointer values in readtext 4-52
restrictions 2-16
with server class sql_server 2-18
with server class db2 2-20
with server class direct_connect or
access_server 2-19
with server class sql_server 2-18
writetext to 4-71
Impersonating a user. See setuser
command
Indexes
defining 2-6
dropping from proxy tables 4-39
update statistics on 4-69
updating 3-19
insert command
proxy tables 4-46
Integrity of data
remote tables and 2-31
Interface to remote servers 2-3
Interfaces file
adding remote servers 3-2

J

Joins
between remote tables 3-6to 3-8

L

like keyword 2-17
Local tables. See Proxy tables
Location for remote tables 2-4

Index-4

lock timeout interval configuration
parameter 3-17

Logging

events 3-18

text or image data 4-71
Logging in

to remote servers 2-3
Logical connections 3-15
Logins

See also Remote logins; Users

external 3-3

M

Mapping
remote objects 3-4to 3-6
Markers, user-defined. See Placeholders;
Savepoints
max cis remote connections configuration
parameter 3-13
max cis remote servers configuration
parameter 3-13
Memory
releasing with deallocate cursor 4-32
Memory usage report 3-18
Modes, trusted/untrusted 2-32

N

Names
local 2-5
setuser 4-62
Native database syntax, using. See
Passthrough mode
Nested select statements. See select
command; Subqueries
Non-logged operations 4-71

0

Object types 2-3

rpc as read only tables 2-15
open command 4-49
Opening cursors 4-49

Adaptive Server Enterprise Release 11.5.x

Optimization
defining existing tables and 2-6
quickpass mode 2-23 4-34, 4-46 4-57,
4-64
remote tables 2-25 3-19
update statistics 2-25
Original identity, resuming an. See
setuser command
Outbound remote procedure calls 3-15

P

Packets, network
size for remote servers 3-14
Pages, data
See also Index pages; Table pages
Passthrough connection permission 2-9
Passthrough mode 2-8
connectto command 2-8, 3-3
sp_autoconnect system procedure 2-10
sp_passthru system procedure 2-11
sp_remotesgl system procedure 2-12
patindex string function 2-17
Pattern matching
remote tables 2-17
with text datatype 2-17
Performance
configuration parameters 3-11
query optimization 2-21
remote tables 2-25 3-19
Permissions
passthrough connections 2-9
Physical connections 3-15
prepare transaction command 2-13
proxy tables and 4-50
Processing remote procedure calls 3-16
Proxy tables
mapping 3-4to 3-6
recovery 3-23
triggers 2-31

Q

Queries

execution settings 4-60
Query optimization 2-21to 2-28
disabling 3-19
Query plans 2-28
create table 2-29
remote tables and 2-28
Quickpass mode 2-23 4-34, 4-46 4-57,
4-64

R

readtext command
errors from 2-18
remote tables and 4-52
Recovery 3-22
Component Integration Services
objects 3-23
configuration file 3-24
ddlgen 5-5
disabling CIS at start-up 3-19
proxy tables 3-23
Reference information
Transact-SQL commands for CIS 4-5
Referential integrity 2-31
Reinstalling databases
ddlgen 5-5
remcon option, dbcc 3-18
Remote connection listing 3-18
Remote logins. See External logins
Remote objects
default storage location 2-4
defining 2-3to 2-5
individual storage location 3-4
mapping 3-4to 3-6
Remote procedure calls 2-15
handling outbound 3-15
transactional 2-13
transmitting 3-16
Remote servers
adding 3-1to 3-3
connection verification 3-3
definition 2-3
interface to 2-3
interfaces file entries 3-2

Component Integration Services User's Guide Index-5

Adaptive Server Enterprise Release 11.5.x

joins 3-6to 3-8
logging in 2-3
security issues 2-32
setting up external logins 3-3
transaction management 2-13
Remote tables
accessing 2-1
defining automatically 5-11
joins 3-6to 3-8
Removing. See Dropping
Replication
ddigen 5-5
Reports
in-memory SRVDES structures 3-18
memory usage 3-18
remote connections 3-18
Resource allocation (sp_configure) 3-11
Results
cursor result set 4-44
rollback command
remote servers and 4-54
rollback transaction command. See rollback
command
rollback work command. See rollback
command
Rows, table
See also select command
update 4-64
RPCs. See Remote procedure calls
Running a procedure with execute
remote servers 4-43
Running Component Integration
Services 1-3, 3-1
rusage option, dbcc 3-18

S

sds server class 4-3
Search conditions
remote tables 2-17
Security
issues for remote servers 2-32
Security issues 2-32
select command

Index-6

remote tables 4-56to 4-59
Server class access_server 4-2
connection management 2-20
datatype conversions 4-21
datatype mapping using defgen
utility 5-13
with text and image datatypes 2-19
Server class db2 4-2
connection management 2-20
datatype conversions 4-23
datatype mapping using defgen
utility 5-11
with text and image datatypes 2-20
Server class direct_connect 4-2
connection management 2-20
datatype mapping using defgen
utility 5-13
with text and image datatypes 2-19
Server class generic 4-4
connection management 2-20
datatype mapping using defgen
utility 5-12
Server class sds 4-3
Server class sql_server 4-1
connection management 2-20
datatype mapping using defgen
utility 5-11
with text and image datatypes 2-18
Server classes 2-2
See also individual server class names
access_server 4-2
db2 4-2
direct_connect 4-2
generic 4-4
sds 4-3
sql_server 4-1
set command
See also individual set options
remote queries 4-60
Setting up Component Integration
Services 1-3 3-1
setuser command
remote objects and 4-62
sp_addexternlogin system procedure 3-3

Adaptive Server Enterprise Release 11.5.x

with ddlgen utility 5-6
sp_addlogin system procedure
with ddigen utility 5-6
sp_addobjectdef system procedure 2-4,
3-4,3-7
generated by defgen utility 5-10
sp_addserver system procedure 3-2, 3-6
sp_autoconnect system procedure 2-10
sp_capabilities system procedure 4-4
sp_configure system procedure 1-3, 3-11
sp_defaultloc system procedure 2-4
sp_passthru system procedure 2-11
sp_remotelogin system procedure 2-32
sp_remotesgl system procedure 2-12
sgl.ini file 3-2
sql_server server class
connection management 2-20
datatype mapping using defgen
utility 5-11
srvdes option, dbcc 3-18
Start-up recovery, disabling 3-19
Statistics
update statistics 4-69
Storage location for remote tables 2-4
Stored procedures
executing remote 4-43
Syntax, using native database. See
Passthrough mode
sysconfigures system table
updating values in 3-12
sysservers system table
remote servers for Component
Integration Services 3-2 4-1
System activities
setting query processing option
for 4-60
System tables
See also Tables; individual table names

T

Table name mapping
automatic using defgen utility 5-11
Tables

Component Integration Services User's Guide

changing remote 4-6
creating proxy 4-16
creating remote 4-27
dropping proxy 4-41
read-only 2-15
remote access 2-1
remote, joins 3-6to 3-8
Tables, proxy
defining 2-5, 2-6to 2-8
triggers 2-31
text datatype 2-16
bulk copy to remote servers 2-18
converting 2-17
entering values 2-18
error logging 2-18
padding 2-17
pattern matching 2-17
restrictions 2-16
with server class db2 2-20
with server class direct_connect or
access_server 2-19
with server class sql_server 2-18
@@textsize global variable 2-17
textsize option, set 2-17
Timeout, connect 3-14
Trace flags 3-18
traceon/traceoff option, dbcc 3-18
Transaction canceling. See rollback
command
Transaction logs
Component Integration Services
and 3-23
Transaction management 2-12to 2-14
Transactional remote procedure
calls 2-13
transactional_rpc on option, set
command 2-13
Transactions
See also Batch processing; rollback
command; User-defined
transactions
ending with commit 4-14
preparing 4-50

Index-7

Adaptive Server Enterprise Release 11.5.x

Transmitting remote procedure Verifying connectivity 3-3
calls 3-16
Triggers 2-31
trunc log on chkpt database option W
proxy tables and 3-23 Wildcard characters 2-17
truncate table command Work session, set options for 4-60
query plan for remote tables 2-31 Write operations
remote tables 4-63 logging text or image 4-71
Trusted mode 2-32 writetext command
Tuning remote tables 4-71

Component Integration Services 3-10

U

Undoing changes. See rollback command
update command
remote tables 4-64
update statistics command
defining existing tables and 2-6
generated by defgen utility 5-10
obtaining complete distribution
statistics 3-19
remote tables 2-25 3-19 4-69
Updating
image datatype 2-19
indexes 3-19
text datatype 2-19
writetext 4-71
User-defined stored procedures,
executing
RPCs 4-43
User-defined transactions
See also Transactions
begin transaction 4-11
ending with commit 4-14
Users of Component Integration
Services 1-2
using option, readtext
errors from 2-18

\Y

Variables, configuration. See
Configuration parameters

Index-8

